241
MESTRADO EM CONSTRUÇÃO METÁLICA DEPARTAMENTO DE ENGENHARIA CIVIL ESCOLA DE UNIVERSIDADE FEDERAL DE OURO PRETO ALEXANDRE DA SILVA GALVÂO DISSERTAÇÃO DE MESTRADO Orientadores: Ricardo Azoubel da Mota Silveira Convênio USIMINAS/UFOP/FUNDAÇÃO Ouro Preto, março de 2000 Formulações Não-Lineares de Elementos Finitos para Análise

Formulações Não-Lineares de Elementos Finitos para Análise · 2019. 8. 30. · de formulações geometricamente não-lineares para elementos finitos reticulados planos encontradas

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • MESTRADO EM CONSTRUÇÃO METÁLICA

    DEPARTAMENTO DE ENGENHARIA CIVIL

    ESCOLA DE

    UNIVERSIDADE FEDERAL DE OURO PRETO

    ALEXANDRE DA SILVA GALVÂO

    DISSERTAÇÃO DE MESTRADO

    Orientadores: Ricardo Azoubel da Mota Silveira

    Convênio USIMINAS/UFOP/FUNDAÇÃO Ouro Preto, março de 2000

    Formulações Não-Lineares de Elementos Finitos para Análise

  • UNIVERSIDADE FEDERAL DE OURO PRETO - ESCOLA DE MINASDEPARTAMENTO DE ENGENHARIA CIVIL

    PROGRAMA DE PÓS – GRADUAÇÃO EM ENGENHARIA CIVIL

    Formulações Não-Lineares de Elementos Finitos para Análisede Sistemas Estruturais Metálicos Reticulados Planos

    AUTOR: ALEXANDRE DA SILVA GALVÃO

    ORIENTADOR: Prof. Dr. Ricardo Azoubel da Mota Silveira

    Dissertação apresentada ao Programa de Pós-Graduação do Departamento de EngenhariaCivil da Escola de Minas da UniversidadeFederal de Ouro Preto, como parte integrantedos requisitos para obtenção do título deMestre em Engenharia Civil, área deconcentração: Construções Metálicas.

    Ouro Preto, março de 2000.

  • III

    “...A ciência é a potência do homem, e, o amor, a sua força;o homem só se torna homem pela inteligência, mas só é homempelo coração.

    Saber, amar e poder; eis a vida completa.”

    Henri-Frédéric Amiel (1821-1891)

    A minha família.

  • IV

    MEUS AGRADECIMENTOS

    “Dê-me uma alavanca e um ponto de apoio,e eu faço mover o mundo.”

    Arquimedes (287AC-217AC)

    • Aos meus pais e ao meu irmão, por serem o meu mundo.

    • Ao meu professor e orientador Ricardo Azoubel da Mota Silveira, por ter

    sido a alavanca e o apoio dessa nossa empreitada.

    • À Escola de Minas, por ser parte da minha vida.

    • Aos meus colegas, pelo prazer da convivência nesses dois anos.

    • À CAPES e à USIMINAS, pela ajuda financeira.

  • V

    RESUMO

    Este trabalho tem como principais objetivos o estudo e a implementação computacional

    de formulações geometricamente não-lineares para elementos finitos reticulados planos

    encontradas na literatura recente. Essas formulações, além de permitir a determinação da matriz

    de rigidez e do vetor de forças internas de forma direta, podem ser acopladas com relativa

    facilidade a várias estratégias de solução não-linear.

    Procurando fornecer diferentes opções de modelagem de problemas de instabilidade

    usando esses elementos finitos reticulados planos, foram implementadas as seguintes

    formulações geometricamente não-lineares: (i) formulações definidas por Alves (1993b) e

    Torkamani et al. (1997), implementadas aqui com procedimentos distintos de se avaliar o vetor

    de forças internas: forma total e forma incremental; (ii) formulações propostas por Yang e Kuo

    (1994), que se basearam em modelos linearizado, linearizado-simplificado e com termos de

    ordem elevada; foram ainda introduzidas por esses autores duas abordagens diferentes,

    implementadas neste trabalho, de obtenção do vetor de forças internas: deslocamentos naturais

    incrementais e rigidez externa; e (iii) formulações em referencial Lagrangiano total, propostas

    por Pacoste e Eriksson (1997), baseadas em diferentes relações cinemáticas e definições de

    deformações; cinco formulações foram sugeridas por esses pesquisadores, onde todas foram

    testadas no presente trabalho.

    Essas formulações foram adaptadas à metodologia de solução não-linear que usa o

    método de Newton-Raphson (Silveira, 1995), acoplado às diferentes estratégias de incremento

    de carga e de iteração que permitem a ultrapassagem de pontos críticos (bifurcação e limite) que

    possam existir ao longo da trajetória de equilíbrio.

    A avaliação da eficiência computacional dessas formulações é feita no final do trabalho

    através da análise de problemas estruturais fortemente não-lineares encontrados na literatura.

    • Alves, R.V. (1993b). Formulação para Análise Não-Linear Geométrica em Referencial LagrangianoAtualizado. 3o Seminário de Doutorado, COPPE/UFRJ.• Pacoste, C. e Eriksson, A. (1997). Beam elements in instability problems. Comput. Methods Appl.Mech. Engrg., No 144, p. 163-197.• Silveira, R.A.M. (1995). Análise de Elementos Estruturais Esbeltos com Restrições Unilaterais deContato. Tese de Doutorado. PUC-RJ, Rio de Janeiro, RJ.• Torkamani, M.A.M., Sonmez, M. e Cao, J. (1997). Second-Order Elastic Plane-Frame Analysis UsingFinite-Element Method. Journal of Structural Engineering, Vol 12, No 9, p. 1225-1235.• Yang, Y.B. e Kuo, S.B. (1994). Theory & Analysis of Nonlinear Framed Structures, Prentice Hall.

  • VI

    ABSTRACT

    The main objectives of this work are the computational implementation and study of

    geometrically non-linear formulations for two dimensional frame elements. In the formulations

    here studied, the stiffness matrix and the internal forces vector can be obtained directly, and

    they can be easily coupled to different non-linear solution strategies.

    In order to give different options for the solutions of instability problems these two

    dimensional frame elements, the following geometrically non-linear formulations were

    implemented: (i) Alves (1993b) e Torkamani et al. (1997) formulations, where two different

    procedures to obtain the internal forces vector (total and incremental approaches) were tested;

    (ii) Yang and Kuo (1994) formulations, where a simplified, a linear-simplified and a higher

    order planar frame element were used; these authors introduced two methodologies to obtain the

    internal load vector: natural deformation and external stiffness approaches; (iii) Pacoste and

    Eriksson (1997) formulations, where a total reference frame (total Lagrangian formulation) was

    adopted, and different kinematic assumptions and strain definitions were used; five different

    formulations were presented and tested in the present work.

    These formulations were coupled to the non-linear solution methodology implemented

    initially by Silveira (1995), which solves the resulting non-linear equations and obtains the non-

    linear equilibrium paths through the Newton-Raphson method together with path following

    techniques, such as the arc-length schemes proposed by Crisfield and orthogonal residual

    procedures derived by Krenk.

    The performance and capacity of these formulations are illustrated by means of several

    numerical examples.

    • Alves, R.V. (1993b). Formulação para Análise Não-Linear Geométrica em Referencial LagrangianoAtualizado. 3o Seminário de Doutorado, COPPE/UFRJ.• Pacoste, C. and Eriksson, A. (1997). Beam elements in instability problems. Comput. Methods Appl.Mech. Engrg., No 144, p. 163-197.• Silveira, R.A.M. (1995). Análise de Elementos Estruturais Esbeltos com Restrições Unilaterais deContato. Tese de Doutorado. PUC-RJ, Rio de Janeiro, RJ.• Torkamani, M.A.M., Sonmez, M. and Cao, J. (1997). Second-Order Elastic Plane-Frame AnalysisUsing Finite-Element Method. Journal of Structural Engineering, Vol 12, No 9, p. 1225-1235.• Yang, Y.B. and Kuo, S.B. (1994). Theory & Analysis of Nonlinear Framed Structures, Prentice Hall.

  • !""

    SUMÁRIO

    Resumo#$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$!

    Abstract$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ !"

    Lista de Figuras$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ %"

    Lista de Tabelas $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%"!

    Lista de Símbolos $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%!"

    Capítulo 1#INTRODUÇÃO

    '$'#()*+",-./01-+#2-./"+$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'

    '$3#)45-6"!)#-#,-+(."07)#,)#6./4/89)$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$:

    '$:#.-!"+7)#4"48")2.;07)$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$?

    3$3#@#+)8>07)#*7)@8"*-/.$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'A

    3$:#.-

  • !"""

    Capítulo 3 – FORMULAÇÕES NÃO-LINEARES DE ELEMENTOS FINITOS:ALVES (1993b) e TORKAMANI et al. (1997)

    :$'#"*6.),>07)$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$3?

    :$3#.-8/01-+#,-D)$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$BA

    Capítulo 4 – FORMULAÇÕES NÃO-LINEARES DE ELEMENTOS FINITOS:YANG e KUO(1994)

    =$'#"*6.),>07)$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$B'

    =$3#.-8/01-+#,-D)$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\\

    Capítulo 5 – FORMULAÇÕES NÃO-LINEARES DE ELEMENTOS FINITOS:PACOSTE e ERIKSSON (1997)

    B$'#"*6.),>07)$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\E

    B$3#.-8/01-+#,-

  • "%

    B$3$'$3#.IUQWgIR#UOFIQHIR$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\?

    B$3$3#.IUQWgIR#JIUhLHQMQR$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$EA

    B$:#*(")*/8#,-#-*-.2"/ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$E:

    B$=#/07)#,)#-8-D-*6)#

  • %

    E$:$'#/HGL#/bQKOML#4OHHLKZUQML#RLb#(QH[Q#SLFKZQU$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$':P

    E$:$3#/HGL#(OHGZUQH#.LKZUQML@-F[QRKQML#+Lb#(QH[Q#SLFKZQU#(IFKHQMQ $$$$$$$$$$$$$$$$'=?

    E$:$:#/HGL#(OHGZUQH#4OHHLKZUQML$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'BE

    E$:$=#SkHKOGL#MI#8II $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'\B

    E$:$B#/HGL#(OHGZUQH#SLZGL#/bQKOML $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'E'

    Capítulo 8#CONCLUSÕES E SUGESTÕES

    P$'#"*6.),>07)$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'EE

    P$3#()*(8>+1-+ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'EP

    P$:#+>2-+61-+$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'P3

    REFERÊNCIAS BIBLIOGRÁFICAS$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'P=

  • %"

    LISTA DE FIGURAS

    Sm[OFQ

    Capítulo 2

  • %""

  • %"""

  • %"!

    LISTA DE TABELAS

    Sm[OFQ

    Capítulo 7

    6QbIUQ#E$'#.IRZJL#MQR#^LHJZUQWgIR $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$??

    6QbIUQ#E$3#.IRZJL#MQR#^LHJZUQWgIR $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'AA

    6QbIUQ#E$:@#+LUZWXL#QFQUVKOGQi#`O[Q#IF[QRKQMQ@UO`HI $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'A=

    6QbIUQ#E$=Q#-HHL#NIHGIFKZQU#JoMOL#MI#Zs8$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'AB

    6QbIUQ#E$=b#-HHL#NIHGIFKZQU#JoMOL#MI#ts8$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'A\

    6QbIUQ#E$BQ#(QH[Q#GHVKOGQi#!QULHIR#MI#SGH#83s#-" $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'''

    6QbIUQ#E$Bb#SLFKL#UOJOKI#MI#MIRULGQJIFKL#i#!QULHIR#MI#Zs8 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$''3

    6QbIUQ#E$\Q#!QULH#MI#Ssh#FL#'L#NLFKL#UOJOKI$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$''\

    6QbIUQ#E$\b#!QULH#MI#Ssh#FL#3L#NLFKL#UOJOKI$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$''\

    6QbIUQ#E$E#!QHOQWXL#MI# A'λ∆ i#d2-#_P#IUIJ$c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$''E

    6QbIUQ#E$P#@#!QULHIR#UOJOKIR#MI#Sshi#d2-#_P#IUIJ$#+Sc$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$''P

    6QbIUQ#E$?Q#!QULH#MI#Sh.3s-"#FL#'L#NLFKL#UOJOKI $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'33

    6QbIUQ#E$?b#!QULH#MI#Sh.3s-"#FL#3L#NLFKL#UOJOKI$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'3:

    6QbIUQ#E$'AQ!QULH#MI#Sh.3s-"#FL#'L#NLFKL#MI#bO^ZHGQWXL$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'3=

    6QbIUQ#E$'Ab!QULH#MI#Sh.3s-"#FL#3L#NLFKL#MI#bO^ZHGQWXL $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'3=

    6QbIUQ#E$''!QULHIR#MQ#GQ[Q#MI#bO^ZHGQWXL#JmfOJQi#SQGLRKI#I#-HOjRRLF#_'??Ec$$$':=

    6QbIUQ#E$'3#!QULH#MQ#bO^ZHGQWXL#JmfOJQ#LbKOMQ#FL#NHIRIFKI#KHQbQUhL$$$$$$$$$$$$$$$$$$':=

    6QbIUQ#E$':Q#u-HHLRv#NIHGIFKZQOR#JoMOLRi#GQH[Q#GIFKHQMQ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'=:

    6QbIUQ#E$':b#u-HHLRv#NIHGIFKZQOR#JoMOLRi#GQH[Q#IfGrFKHOGQ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'==

    6QbIUQ#E$'=#-^OGOrFGOQ#GLJNZKQGOLFQU$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'=E

    6QbIUQ#E$'B#S.3s-"#FL#'L#NLFKL#UOJOKI$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'B3

    6QbIUQ#E$'\#@#'L#NLFKL#UOJOKIi#MO`IHRQR#^LHJZUQWgIR $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'B\

    6QbIUQ#E$'E#'Q#(QH[Q#GHVKOGQ$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'\:

  • %!

    6QbIUQ#E$'P#-^OGOrFGOQ#MQR#^LHJZUQWgIRi#QHGL#GLJNUIKL#_3\#IUIJ$c $$$$$$$$$$$$$$$$$$$$$$'\=

    6QbIUQ#E$'?#-^OGOrFGOQi#/

  • %!"

    LISTA DE SÍMBOLOS

    Capítulo 2

    λ SQHTJIKHL#MI#GQH[Q#HIRNLFRm`IU#NIUL#IRGQULFQJIFKL#MI#Fr$

    ζ 6LUIHTFGOQ#QL#HIRVMZL#HInZIHOMQ#FL#NHLGIRRL#MI#GLF`IH[rFGOQ$

    ζ'

  • %!""

    K DQKHOY#MI#HO[OMIY#HINHIRIFKQKO`Q#ML#RORKIJQ#IRKHZKZHQU$

    ∆U (LJNHOJIFKL#MI#QHGL#MQ#KHQpIKkHOQ#MI#InZOUVbHOL$

    K yUKOJQ#GLF^O[ZHQWXL#MI#InZOUVbHOL#NHLGIRRQMQ$

    K#z#∆K (LF^O[ZHQWXL#MI#InZOUVbHOL#NHLGZHQMQ#FL#NQRRL#MI#GQH[Q#GLHHIFKI$

    u !IKLH#MI#MIRULGQJIFKLR#FLMQOR$

    ∆u !IKLH#MI#MIRULGQJIFKLR#FLMQOR#OFGHIJIFKQOR$

    ∆u_j@'c#I#∆u#j !IKLH# MI# MIRULGQJIFKLR# FLMQOR# OFGHIJIFKQOR# Q`QUOQML# FQ# OKIHQWXL

    QFKIHOLH#_j@'c#I#FQ#OKIHQWXL#GLHHIFKI#j$

    ∆uA "FGHIJIFKL#OFOGOQU#MLR#MIRULGQJIFKLR#FLMQOR$

    δu !IKLH#MI#MIRULGQJIFKLR#HIROMZQOR$

    δug SQHGIUQ#MI#δu HI^IHIFKI#{R#^LHWQR#HIROMZQOR#g$

    δu_j@'c#I#δuj !IKLH# MI# MIRULGQJIFKLR# HIROMZQOR# OFGHIJIFKQOR# Q`QUOQML# FQ# OKIHQWXL

    QFKIHOLH#_j@'c#I#FQ#OKIHQWXL#GLHHIFKI#j$

    δur SQHGIUQ#MI#δu HI^IHIFKI#{R#^LHWQR#MI#HI^IHrFGOQ#Fr$

    δu6 !IKLH#MLR#MIRULGQJIFKLR#KQF[IFGOQOR$

    jwuδ !IKLH#MLR#MIRULGQJIFKLR#OKIHQKO`LR$

    Capítulo 3

    Π# -FIH[OQ#NLKIFGOQU#KLKQU$

    ψ .LKQWXL#MI#GLHNL#HV[OML#_KLKQU#LZ#OFGHIJIFKQUc$

    ∆θ .LKQWXL#OFGHIJIFKQU#MI#ZJ#NLFKL#nZQUnZIH#ML#IUIJIFKL$

    ∆Π# "FGHIJIFKL#MQ#IFIH[OQ#NLKIFGOQU#KLKQU$

    ∆σ# "FGHIJIFKL#MI#KIFRXL#QfOQU$

    ∆εff "FGHIJIFKL#MI#MI^LHJQWXL#QfOQU$

    ∆Iff SQHGIUQ#UOFIQH#MI#∆εff$

    ∆ηff SQHGIUQ#MI#∆εff#nZI#GLFKoJ#LR#KIHJLR#nZQMHmKOGLR$Kε ,I^LHJQWXL#QfOQU#FQ#GLF^O[ZHQWXL#MI#InZOUVbHOL#K$

    δa#φ'#I#φ3# ,IRULGQJIFKLR#FQKZHQOR#_KLKQOR#LZ#OFGHIJIFKQORc$

    / ;HIQ#MQ#RIWXL#KHQFR`IHRQU#ML#IUIJIFKL$

    A| DQKHOY#MI#GLJNQKObOUOMQMI#GOFIJmKOGQ$

  • %!"""

    ∆d !IKLH#MI#MIRULGQJIFKLR#OFGHIJIFKQOR$

    - DkMZUL#MI#IUQRKOGOMQMI#ML#JQKIHOQU#nZI#GLJNgI#L#IUIJIFKL$

    -" .O[OMIY#{#^UIfXL#MQ#`O[Q$

    iFKK ∆+ !IKLH#MI#^LHWQR#OFKIHFQR#GQUGZUQMQR#FQ#OKIHQWXL#GLHHIFKI$

    |KKiF

    ∆+ !IKLH#MI#^LHWQR#OFKIHFQR#InZO`QUIFKI$

    [UKK

    iF∆+ !IKLH#MI#^LHWQR#OFKIHFQR#GQUGZUQML#FL#RORKIJQ#[ULbQU#MI#HI^IHrFGOQR$

    ∆KFi "FGHIJIFKL#ML#`IKLH#MI#^LHWQR#OFKIHFQR$KFi# !IKLH#MI#^LHWQR#OFKIHFQR#GQUGZUQMQR#FQ#GLF^O[ZHQWXL#MI#InZOUVbHOL#K$

    Fr !IKLH#MI#^LHWQR#MI#HI^IHrFGOQ$

    g !IKLH#MI#^LHWQR#HIROMZQOR$

    H DQKHOY# nZI# GLFKoJ# QR# ^ZFWgIR# MI# OFKIHNLUQWXL# nZI# HIUQGOLFQJ# LR

    MIRULGQJIFKLR# OFGHIJIFKQOR# ∆d# GLJ# LR# MIRULGQJIFKLR# FLMQOR

    OFGHIJIFKQOR#∆u$

    K# DQKHOY#MI#HO[OMIY#IUIJIFKQH$

    K[U# DQKHOY#MI#HO[OMIY#[ULbQU#ML#RORKIJQ#IRKHZKZHQU$

    Kτ# DQKHOY#MI#HO[OMIY#[ILJoKHOGQ$

    K8# DQKHOY#MI#HO[OMIY#UOFIQH$

    K'#I#K3 DQKHOYIR#MI#HO[OMIY#FXL@UOFIQH#MI#NHOJIOHQ#LHMIJ#I#RI[ZFMQ#LHMIJ$

    8 (LJNHOJIFKL#OFOGOQU#ML#IUIJIFKL$K8 (LJNHOJIFKL#ML#IUIJIFKL#FQ#GLF^O[ZHQWXL#MI#InZOUVbHOL#K$Kz∆K8 (LJNHOJIFKL#ML#IUIJIFKL#FQ#GLF^O[ZHQWXL#GLHHIFKI#Kz∆K$

    D DLJIFKL#^UIKLH#FQ#GLF^O[ZHQWXL#MI#InZOUVbHOL#K$

    D'#I#D3 DLJIFKLR#FLMQOR#FQ#GLF^O[ZHQWXL#MI#InZOUVbHOL#K$

    S

  • %"%

    |Fu !IKLH#MI#MIRULGQJIFKLR#FQKZHQOR#InZO`QUIFKI$

    ∆u !IKLH#MI#MIRULGQJIFKLR#FLMQOR#OFGHIJIFKQOR$

    ∆un !IKLH#MI#MIRULGQJIFKLR#FQKZHQOR#OFGHIJIFKQOR$

    Z∆ "FGHIJIFKL# MI# MIRULGQJIFKL# QfOQU# MI# ZJ# NLFKL# MORKQFKI# }# MQ# UOFhQ

    FIZKHQ#MQ#RIWXL#KHQFR`IHRQU$

    ∆># "FGHIJIFKL#MQ#IFIH[OQ#OFKIHFQ#MI#MI^LHJQWXL$

    ∆!# "FGHIJIFKL#MQ#IFIH[OQ#NLKIFGOQU#MQR#^LHWQR#IfKIHFQR$

    ∆Z#I#∆` ,IRULGQJIFKLR# OFGHIJIFKQOR# MI# ZJ# NLFKL# nZQUnZIH# ML# IUIJIFKLa# FQ

    MOHIWXL#MLR#IOfLR#f#I#}#HIRNIGKO`QJIFKI$

    ># -FIH[OQ#OFKIHFQ#MI#MI^LHJQWXL$

    >τ# SQHGIUQ#MI#∆>#nZI#GLHHIRNLFMI#{#OF^UZrFGOQ#MQR#MI^LHJQWgIR#OFOGOQOR$

    >A# SQHGIUQ#MI#∆>#QRRLGOQMQ#{R# ^LHWQR#QGZJZUQMQR#QKo#Q#GLF^O[ZHQWXL#MI

    InZOUVbHOL#K$

    >'#I#>3 SQHGIUQR#MI#∆>#nZI#HIRZUKQHXL#JQKHOYIR#MI#HO[OMIY#FXL@UOFIQH#K1#I#K2$

    >8# SQHGIUQ#MI#∆>#nZI#Mm#LHO[IJ#{#JQKHOY#MI#HO[OMIY#UOFIQH#KL$

    !# -FIH[OQ#NLKIFGOQU#MQR#^LHWQR#IfKIHFQR$

    Capítulo 4

    ψ .LKQWXL#OFGHIJIFKQU#MI#GLHNL#HV[OML$

    ∆θ .LKQWXL#OFGHIJIFKQU#MI#ZJ#NLFKL#nZQUnZIH#ML#IUIJIFKL$

    ∆Π# "FGHIJIFKL#MQ#IFIH[OQ#NLKIFGOQU#KLKQU$∆Kτf}# "FGHIJIFKL#MI#KIFRXL#GORQUhQFKI$

    ∆εff "FGHIJIFKL#MI#MI^LHJQWXL#QfOQU$

    ∆εf} "FGHIJIFKL#MI#MI^LHJQWXL#GORQUhQFKI$

    ∆Iff SQHGIUQ#UOFIQH#MI#∆εff$

    ∆ηff SQHGIUQ#MI#∆εff#nZI#GLFKoJ#LR#KIHJLR#nZQMHmKOGLR$

    ∆If} SQHGIUQ#UOFIQH#MI#∆εf}$

    ∆ηf} SQHGIUQ#MI#∆εf}#nZI#GLFKoJ#LR#KIHJLR#nZQMHmKOGLR$

    δa#φ'#I#φ3# ,IRULGQJIFKLR#FQKZHQOR#_OFGHIJIFKQORc$

    / ;HIQ#MQ#RIWXL#KHQFR`IHRQU#ML#IUIJIFKL$

  • %%

    - DkMZUL#MI#IUQRKOGOMQMI#ML#JQKIHOQU#nZI#GLJNgI#L#IUIJIFKL$

    -" .O[OMIY#{#^UIfXL#MQ#`O[Q$

    iFKK ∆+ !IKLH#MI#^LHWQR#OFKIHFQR#GQUGZUQMQR#FQ#OKIHQWXL#GLHHIFKI$

    [UKK

    iF∆+ !IKLH#MI#^LHWQR#OFKIHFQR#GQUGZUQML#FL#RORKIJQ#[ULbQU#MI#HI^IHrFGOQR$

    ∆KFi "FGHIJIFKL#ML#`IKLH#MI#^LHWQR#OFKIHFQR$KFi# !IKLH#MI#^LHWQR#OFKIHFQR#GQUGZUQMQR#FQ#GLF^O[ZHQWXL#MI#InZOUVbHOL#K$

    Fr !IKLH#MI#^LHWQR#MI#HI^IHrFGOQ$

    g !IKLH#MI#^LHWQR#HIROMZQOR$

    K# DQKHOY#MI#HO[OMIY#IUIJIFKQH$

    K[U# DQKHOY#MI#HO[OMIY#[ULbQU#ML#RORKIJQ$

    Kτ# DQKHOY#MI#HO[OMIY#[ILJoKHOGQ$

    K8# DQKHOY#MI#HO[OMIY#UOFIQH$

    K'#I#K3 DQKHOYIR#MI#HO[OMIY#FXL@UOFIQH#MI#NHOJIOHQ#LHMIJ#I#RI[ZFMQ#LHMIJ$

    KHI# DQKHOY#MI#HO[OMIY#IfKIHFQ$K8 (LJNHOJIFKL#ML#IUIJIFKL#FQ#GLF^O[ZHQWXL#MI#InZOUVbHOL#K$Kz∆K8 (LJNHOJIFKL#ML#IUIJIFKL#FQ#GLF^O[ZHQWXL#GLHHIFKI#Kz∆K$KD DLJIFKL#^UIKLH#FQ#GLF^O[ZHQWXL#MI#InZOUVbHOL#K$

    D'#I#D3 DLJIFKLR#FLMQOR#FQ#GLF^O[ZHQWXL#MI#InZOUVbHOL#K$KS τ# SQHGIUQ#MI#∆>#nZI#GLHHIRNLFMI#{#OF^UZrFGOQ#MQR#MI^LHJQWgIR#OFOGOQOR$

    >A# SQHGIUQ#MI#∆>#QRRLGOQMQ#{R# ^LHWQR#QGZJZUQMQR#QKo#Q#GLF^O[ZHQWXL#MI

    InZOUVbHOL#K$

    >'#I#>3 SQHGIUQR#MI#∆>#nZI#HIRZUKQHXL#JQKHOYIR#MI#HO[OMIY#FXL@UOFIQH#K1#I#K2$

  • %%"

    >8# SQHGIUQ#MI#∆>#nZI#Mm#LHO[IJ#{#JQKHOY#MI#HO[OMIY#UOFIQH#KL$

    ∆u !IKLH#MI#MIRULGQJIFKLR#FLMQOR#OFGHIJIFKQOR$

    ∆un !IKLH#MI#MIRULGQJIFKLR#FQKZHQOR#OFGHIJIFKQOR$

    # reu !IKLH#MI#MIRULGQJIFKLR#OFGHIJIFKQOR#MI#GLHNL#HV[OML$

    ∆># "FGHIJIFKL#MQ#IFIH[OQ#OFKIHFQ#MI#MI^LHJQWXL$

    ∆Z#I#∆` ,IRULGQJIFKLR# OFGHIJIFKQOR# MI# ZJ# NLFKL# nZQUnZIH# ML# IUIJIFKLa# FQ

    MOHIWXL#MLR#IOfLR#f#I#}#HIRNIGKO`QJIFKI$

    Z∆ "FGHIJIFKL# MI# MIRULGQJIFKL# QfOQU# MI# ZJ# NLFKL# MORKQFKI# }# MQ# UOFhQ

    FIZKHQ#MQ#RIWXL#KHQFR`IHRQU$

    ∆!# "FGHIJIFKL#MQ#IFIH[OQ#NLKIFGOQU#MQR#^LHWQR#IfKIHFQR$

    Capítulo 5

    θH .LKQWXL#MI#GLHNL#HV[OML$

    θF .LKQWXL#FQKZHQU$

    θ .LKQWXL#MI#ZJ#NLFKL#nZQUnZIH#ML#IUIJIFKL$

    θ'#I#θ3 .LKQWgIR#FLMQOR$

    Π# -FIH[OQ#NLKIFGOQU#KLKQU$

    εff ,I^LHJQWXL#QfOQU$

    εf} ,I^LHJQWXL#GORQUhQFKI$

    γ# ,I^LHJQWXL#GORQUhQFKIi#γ#q#3$#εf}$

    a#_fc# !IKLH#ZFOKmHOL#LHKL[LFQU#Q#_+c$

    / ;HIQ#MQ#RIWXL#KHQFR`IHRQU#ML#IUIJIFKL$

    Afa#Af1#I#Af3# .IUQWgIR# MI# KHQFR^LHJQWXL# IFKHI# L# GQJNL# MLR# NQHTJIKHLR

    [IFIHQUOYQMLR#I#L#GQJNL#MLR#MIRULGQJIFKLR#FLMQOR$

    Aca#Ac1a#Ac2a#Af3# .IUQWgIR#MI#KHQFR^LHJQWXL#IFKHI#L#GQJNL#MLR#MIRULGQJIFKLR#FQKZHQOR

    KLKQOR#I#L#GQJNL#MLR#MIRULGQJIFKLR#FLMQOR$

    b#_fc# !IKLH#ZFOKmHOL#NQHQUIUL#Q#_+c$

    - DkMZUL#MI#IUQRKOGOMQMI#ML#JQKIHOQU#nZI#GLJNgI#L#IUIJIFKL$

    -" .O[OMIY#{#^UIfXL#ML#IUIJIFKL$

    ^'a#^3a#^:#I#^=# SQHTJIKHLR#[IFIHQUOYQMLR$

  • %%""

    ^OO# (LJNLFIFKIR#MI# iFKK ∆+ $

    iFKK ∆+ !IKLH#MI#^LHWQR#OFKIHFQR#GQUGZUQMQR#FQ#OKIHQWXL#GLHHIFKI$

    [UKK

    iF∆+ !IKLH#MI#^LHWQR#OFKIHFQR#GQUGZUQML#FL#RORKIJQ#[ULbQU#MI#HI^IHrFGOQR$

    ^[O# (LJNLFIFKIR#MI#Fg$

    Fg !IKLH#MI#^LHWQR#[IFIHQUOYQMQR$

    2/ .O[OMIY#ML#IUIJIFKL#QL#GORQUhQJIFKL$

    -"#I#2/##a/- # !QULHIR#MI#HO[OMIY#InZO`QUIFKIR$

    j# (ZH`QKZHQ#MQ#`O[Q$

    jOO# (LJNLFIFKIR#MI#K$

    K# DQKHOY#MI#HO[OMIY#IUIJIFKQH$

    K[U# DQKHOY#MI#HO[OMIY#[ULbQU#ML#RORKIJQ$

    e[Op# (LJNLFIFKIR#MI#Kg$

    Kg$ DQKHOY#MI#HO[OMIY#GLHHIRNLFMIFKI#Q#Fg$A8 (LJNHOJIFKL#ML#IUIJIFKL#FQ#GLF^O[ZHQWXL#MI#InZOUVbHOL#OFOGOQU#K#q#A$Kz∆K8 (LJNHOJIFKL#ML#IUIJIFKL#FQ#GLF^O[ZHQWXL#GLHHIFKI#Kz∆K$

    D DLJIFKL#^UIKLH$

    S # -FIH[OQ#OFKIHFQ#MI#MI^LHJQWXL$

    Z'#I#Z3 ,IRULGQJIFKLR#FLMQORa#FQ#MOHIWXL#ML#IOfLR#f$

    ZF3a#θF'#I#θF3# ,IRULGQJIFKLR#FQKZHQOR#KLKQOR$

  • %%"""

    Z#I#` ,IRULGQJIFKLR# MI# ZJ# NLFKL# nZQUnZIH# ML# IUIJIFKLa# FQ# MOHIWXL# MLR

    IOfLR#f#I#}#HIRNIGKO`QJIFKI$

    !# -FIH[OQ#NLKIFGOQU#MQR#^LHWQR#IfKIHFQR$

    `'#I#`3 ,IRULGQJIFKLR#FLMQORa#FQ#MOHIWXL#ML#IOfL#}$

  • !"#$%&'()*&

    !+!,-,./"'0%1)20/,30%1"/

    O desenvolvimento de novos materiais e técnicas construtivas, bem como os

    recursos computacionais disponíveis hoje, têm levado ao emprego de elementos

    estruturais cada vez mais esbeltos. A medida que se aumenta a esbeltez de um dado

    elemento estrutural, este torna-se cada vez mais susceptível a sofrer grandes deflexões

    laterais, que tendem a ocorrer antes da ruptura física. Para se projetar esse tipo de

    estrutura deve-se usar o chamado critério de estabilidade. O estudo da não-linearidade

    geométrica desses elementos estruturais torna-se, portanto, cada vez mais importante,

    possibilitando em certos casos o aparecimento de múltiplas configurações de equilíbrio

    (estáveis e instáveis), e a existência de pontos críticos (pontos limites e pontos de

    bifurcação) ao longo do caminho não-linear de equilíbrio onde a estrutura pode exibir

    saltos dinâmicos.

    Portanto, o conhecimento do comportamento não-linear de elementos estruturais

    esbeltos, tais como colunas, arcos, anéis, placas e cascas, é de fundamental importância

    na solução de problemas de estabilidade/instabilidade local e/ou global de sistemas

    estruturais complexos, pois na maioria das aplicações de engenharia esses sistemas são

    formadas a partir da união desses elementos.

    A análise da estabilidade de sistemas estruturais esbeltos através do Método dos

    Elementos Finitos (MEF) envolve invariavelmente a solução de um sistema de equações

    algébricas não-lineares. Como relatado no artigo de Riks (1979) e também destacado

    em Silveira (1995), existem basicamente duas classes de solução desse sistema de

    equações:

  • 2

    1. Adaptação computacional do método de perturbação desenvolvido por Koiter

    (1970). Durante muitos anos o método de Koiter foi considerado inadequado ao

    contexto de elementos finitos, entretanto, trabalhos recentes como os

    desenvolvidos por Salerno e Lanzo (1997) e Wu e Wang (1997) provam o

    contrário, renovando o interesse dos pesquisadores por esse método;

    2. Métodos que procuram resolver as equações não-lineares passo a passo. Incluídos

    nessa segunda classe estão os métodos puramente incrementais, as técnicas

    baseadas em relações de rigidez secante e os esquemas que combinam

    procedimentos incrementais e iterativos, que são atualmente considerados os mais

    eficientes e que serão utilizado no presente trabalho.

    Recentemente, muitos pesquisadores têm desenvolvido formulações

    geometricamente não-lineares para elementos finitos (Alves 1993a-b; Crisfield, 1991;

    Yang e Kuo, 1994; Pacoste e Eriksson, 1997; Torkamani et al., 1997; Neuenhofen e

    Fillippou, 1997 e 1998), que têm sido adequadamente empregadas na modelagem de

    vários sistemas estruturais esbeltos. Essas formulações permitem a determinação da

    matriz de rigidez e do vetor de forças internas de forma direta e podem ser acopladas

    com relativa facilidade às várias estratégias de solução não-linear.

    Essas considerações motivaram a adoção desse tema para a presente dissertação

    de mestrado.

  • 3

    !+4,-,&560$"7&,0,'0/.%")*&,'&,$%15189&

    O presente trabalho é parte integrante das seguintes linhas de pesquisa do

    Mestrado em Construção Metálica (Deciv/EM/UFOP):

    • Análise Numérica e Computacional em Engenharia: tem como objetivo a

    aplicação de métodos numéricos, como o método dos elementos finitos (MEF) e/ou o

    método dos elementos de contorno (MEC), na determinação de respostas de sistemas de

    engenharia;

    • Instabilidade das Estruturas: objetiva o estudo do equilíbrio e estabilidade de

    elementos estruturais esbeltos (colunas, arcos, anéis, placas e cascas) submetidos a

    carregamentos diversos.

    O principal objetivo deste trabalho é o estudo e implementação computacional de

    formulações geometricamente não-lineares, para elementos finitos reticulados planos.

    Essas formulações serão integradas à metodologia de solução numérica implementada

    por Silveira (1995) e expandida por Rocha (2000), que implementou com sucesso

    algumas estratégias de solução não-linear encontradas recentemente na literatura.

    A seguir, na Seção (1.3), é feita uma revisão bibliográfica onde atenção especial é

    dada aos trabalhos que tratam diretamente de formulações geometricamente não-

    lineares.

    No Capítulo 2 é feita uma explanação geral sobre a metodologia de solução não-

    linear adotada, apresentando de maneira resumida as estratégias de incremento de carga

    e iterações usadas no presente trabalho.

    Os Capítulos 3, 4 e 5 pretendem apresentar de forma detalhada o desenvolvimento

    teórico das formulações de elementos finitos não-lineares, que é o principal objeto de

    estudo desta dissertação. Na descrição dessas formulações merecem destaque as

    relações deformação-deslocamento, as deduções das equações de equilíbrio, o tipo de

    elemento finito e as funções de interpolação utilizadas e, finalmente, a obtenção dos

    vetores de forças internas e das matrizes de rigidez.

    O Capítulo 6 apresenta de forma resumida os procedimentos adotados na

    implementação computacional das formulações apresentadas nos Capítulos 3, 4 e 5,

    onde atenção especial é dada à montagem da matriz de rigidez e do vetor de forças

    internas.

  • 4

    As formulações apresentadas nos Capítulos 3, 4 e 5 são analisadas no Capítulo 7,

    que apresenta exemplos de problemas estruturais encontrados na literatura. A Seção

    (7.2) fornece cinco exemplos clássicos que, por serem mais simples, têm soluções

    analíticas (exatas) encontradas na literatura. Em função da confiabilidade dessas

    análises, seus resultados têm o objetivo de avaliar a qualidade dos resultados produzidos

    pelas diferentes formulações. Com o intuito de validar as observações feitas na Seção

    (7.2), são abordados na Seção (7.3) cinco problemas estruturais de estabilidade elástica

    fortemente não-lineares, cujas soluções, obtidas numericamente por diversos

    pesquisadores, são encontradas na literatura.

    Finalmente, no Capítulo 8, são apresentadas as conclusões sobre o emprego das

    diversas formulações analisadas nos exemplos do Capítulo 7. São fornecidas também

    algumas sugestões para o desenvolvimento de trabalhos futuros.

    !+:,-,%07"/*&,5"58"&3%;

  • 5

    comparativo entre as formulações de Argyris (1964), Martin (1965), Jennings (1968),

    Mallet e Marçal (1968) e Powell (1969).

    Epstein e Murray (1976) desenvolveram uma formulação para elementos de

    pórticos planos análoga à formulação para elementos de casca, para grandes

    deformações, apresentada por Budiansky (1968).

    Recentemente, formulações em referenciais Lagrangianos (RLT e RLA) foram

    apresentadas por vários pesquisadores, dos quais pode-se citar: Wen et al. (1983);

    Chajes et al. (1987); Goto et al. (1987); Wong e Loi (1990); Alves (1993a-b) e

    Torkamani et al. (1997). Yang e Kuo (1994) sugeriram uma forma incremental de se

    calcular o vetor de forças internas com duas abordagens diferentes para os

    deslocamentos nodais: deslocamentos naturais incrementais e rigidez externa. Pacoste e

    Eriksson (1995 e 1997) introduziram formulações em RLT baseadas em relações

    deformação-deslocamento denominadas ‘relações melhoradas’, com a não-linearidade

    expressa por funções trigonométricas.

    Singh e Singh (1992) propuseram um modelo com matriz de rigidez e vetor de

    forças internas modificáveis de acordo com a natureza das forças axiais.

    Um procedimento geral para a obtenção de matrizes de rigidez simétricas foi

    proposto por Moran et al. (1998). Neuenhofer e Filippou (1998) propuseram uma

    formulação baseada no método da flexibilidade.

    Crisfield (1991) afirmou em seu livro que o termo corrotacional tem sido

    utilizado na literatura em diferentes contextos, sendo portanto, como afirmam ainda

    Pacoste e Eriksson (1997), uma denominação inconsistente. A idéia central desse tipo

    de formulação é o cálculo da matriz rigidez e do vetor de forças internas no campo dos

    deslocamentos naturais (ou locais), que são os deslocamentos referidos a um sistema de

    coordenadas que é atualizado a cada passo de carga, acompanhando a rotação sofrida

    pelo elemento. Das formulações com abordagem corrotacional publicadas recentemente

    pode-se destacar a formulação em RLA proposta por Crisfield (1991) e as formulações

    desenvolvidas em RLT por Pacoste e Eriksson (1997) e Xu e Mirmiran (1997).

    Ao contrário da teoria de vigas de Bernoulli, na teoria de vigas de Timoshenko os

    efeitos devidos às deformações cisalhantes na seção transversal não são desprezados no

    cálculo da rigidez da estrutura. Formulações baseadas na teoria de vigas de Timoshenko

  • 6

    foram propostas por Iwakuma (1990), Lee et al. (1994), Petrolito (1995) e Pacoste e

    Eriksson (1997).

    Os sistemas estruturais formados por barras curvas podem ser analisados com as

    formulações de elementos finitos de vigas retas. Porém, com o intuito de melhorar a

    eficiência dessas análises foram desenvolvidas formulações de elementos finitos curvos.

    Entre os trabalhos recentes, merecem destaque as formulações de elementos curvos

    propostas por Marquist e Wang (1989), Kim e Kim (1998), e Raveendranath et al.

    (1999); e as formulações de elementos parabólicos propostas por Litewka e Rakowski

    (1997 e 1998).

    Paralelamente aos elementos para análises bidimensionais, têm-se desenvolvido o

    estudo de elementos finitos para análise geometricamente não-linear de pórticos

    tridimensionais. Sabe-se de antemão que uma formulação não-linear tridimensional não

    é uma simples extensão de uma formulação bidimensional porque as rotações finitas

    tridimensionais não são quantidades vetoriais. Recentemente, vários pesquisadores têm

    publicado formulações não-lineares para análise estática de pórticos tridimensionais.

    Entre eles pode-se destacar Yang e Kuo (1994), que propôs formulações para elementos

    tridimensionais retos e curvos; Choi e Lim (1995), com uma formulação de elemento

    curvo; al.et coviIbrahimbeg ′ (1996); Ammar et al. (1996), com formulações para

    elementos de vigas esbeltas e não-esbeltas; Matsununga (1996), com uma formulação

    para pilares não-esbeltos; Pacoste e Eriksson (1997), que propuseram formulações com

    abordagem total e corrotacional; Rhim e Lee (1998), que desenvolveram uma

    formulação dando um tratamento vetorial à geometria do problema; e Li (1998), que

    elaborou uma formulação aplicando a teoria de rotações finitas.

    Tem-se produzido também um grande número de formulações geometricamente

    não-lineares incluindo análise elasto-plástica de sistemas estruturais reticulados. Essas

    formulações têm como principal característica a adotação do critério de escoamento

    plástico na determinação das tensões. Nessa linha de pesquisa pode-se destacar os

    seguintes trabalhos já publicados: Hsiao et al. (1988), Lee (1988), Meek e Loganathan

    (1990), Chang-New Chen (1996), Park e Lee (1996), Ovunc e Ren (1996), Saje et al.

    (1997), Saje et al. (1998), Waszczyszyn e Michalska (1998).

  • 7

    Nos últimos 20 anos, os avanços tecnológicos e as exigências do mercado de

    engenharia, que introduziram maior complexidade e eficiência aos cálculos estruturais,

    levaram os pesquisadores a procurarem metodologias de solução que ao mesmo tempo

    produzissem resultados precisos e fossem de rápido processamento. Juntamente com as

    pesquisas relativas ao desenvolvimento de formulações não-lineares, muitos trabalhos

    têm sido produzidos com a finalidade de se determinar a melhor estratégia de solução

    não-linear. Os métodos que têm mostrado maior eficiência são os que combinam

    procedimentos incrementais e iterativos. Como trabalhos pioneiros podem ser citados os

    desenvolvidos por: Argyris (1964), com a aplicação de um método incremental para

    solução não-linear; Mallet e Marçal (1968), que utilizaram iterações do tipo Newton

    para contornarem os possíveis erros nas aproximações incrementais; Zienkiewicz

    (1971), que apresentou uma modificação no método de Newton-Raphson, fazendo com

    que a matriz de rigidez só fosse atualizada a cada passo de carga.

    Diversos trabalhos têm sido publicados apresentando diferentes estratégias de

    controle automático do processo incremental, bem como diferentes estratégias de

    iteração. Utilizando um ‘parâmetro de rigidez corrente’ como indicador do grau de não-

    linearidade do sistema, Bergan et al. (1978) e Bergan (1980) suprimiram as iterações de

    equilíbrio nas zonas críticas da trajetória, até os pontos limites serem atravessados; os

    trabalhos de Bergan et al. (1978) e Heijer e Rheinbold (1981) forneceram diferentes

    estratégias de incremento de carga.

    Batoz e Dhatt (1979) apresentaram uma técnica na qual o ciclo iterativo é

    realizado não à carga constante, mas a deslocamento constante, o que permite se obter

    os pontos limites de carga mas não os de deslocamento; Riks (1979) apresentou um

    método, baseado no parâmetro comprimento de arco ∆l, capaz de calcular pontos limites

    de carga e de deslocamento com a introdução de um parâmetro que controla o progresso

    dos cálculos ao longo do caminho de equilíbrio; Meek e Tan (1984) apresentaram um

    resumo das principais técnicas para se ultrapassar os pontos limites, das quais a técnica

    do comprimento de arco foi reconhecida como uma das mais eficientes. Contribuíram

    com essa técnica: Riks (1972 e 1979), Ramm (1981), Schweizerhof e Wriggers (1986) e

    Crisfield (1981, 1991 e 1997).

    Yang e Kuo (1994) introduziram estratégias de incremento de carga e iteração

    baseadas em relações de restrição para as quais é definido um parâmetro generalizado,

  • 8

    Krenk (1993 e 1995) elaborou uma nova estratégia de iteração, introduzindo duas

    condição de ortogonalidade: a primeira entre o vetor de cargas residuais e o incremento

    de deslocamento e a outra entre o incremento de forças internas e o vetor de

    deslocamentos iterativos.

    Crisfield (1997) introduziu procedimentos numéricos que permitem avaliar com

    precisão os pontos críticos existentes, e obter as trajetórias de equilíbrio secundárias.

    Silveira et al. (1999a-b) forneceram uma metodologia geral de solução de

    sistemas de equações algébricas não-lineares que, num contexto computacional pode ser

    resumida em duas partes: (i) a partir de uma dada configuração de equilíbrio da

    estrutura é calculada uma solução incremental inicial; (ii) em seguida, essa solução é

    corrigida com iterações do tipo Newton até ser atingida a nova configuração de

    equilíbrio. Nesses dois trabalhos diversas estratégias de iteração e incremento de carga

    foram testadas. Utilizando a mesma metodologia, Rocha (2000), em sua Dissertação de

    Mestrado, vem realizando um estudo comparativo de diversas estratégias de iteração e

    incremento de carga através da análise de vários exemplos numéricos de sistemas

    estruturais.

  • 2SOLUÇÃO NÃO-LINEAR

    2.1 – INTRODUÇÃO

    /# QFmUORI# MQ# IRKQbOUOMQMI# MI# RORKIJQR# IRKHZKZHQOR# IRbIUKLR# QKHQ`oR# ML#JoKLML# MI

    IUIJIFKLR#^OFOKLR#_D-

  • 'A

    *L#NHIRIFKI#KHQbQUhLa#QKIFWXL#IRNIGOQU#o#MOHIGOLFQMQ#QL#NHOJIOHL#OKIJ$

    /#+IWXL#_3$3c#NHIKIFMI#JLRKHQH#MI#JQFIOHQ#RZGOFKQ#Q#JIKLMLUL[OQ#MI#RLUZWXL#FXL@

    UOFIQH#_OFGHIJIFKQU@OKIHQKO`Qca#nZI#^LO#OJNUIJIFKQMQ#NLH#+OU`IOHQ#_'??Bca#I#RIHm#ZKOUOYQMQ

    GLJL#bQRI#ML#NHIRIFKI#KHQbQUhL$

    *Q#+IWXL#_3$:c#RXL#QNHIRIFKQMLR#LR#HI^IHIFGOQOR#8Q[HQF[OQFLR#_KLKQU#I#QKZQUOYQMLc

    IJ# nZI# QR# ^LHJZUQWgIR# FXL@UOFIQHIR# MI# IUIJIFKLR# ^OFOKLR# RXL# MIMZYOMQR$# SLH# RIHIJ# L

    NHOFGONQU# LbpIKL# MI# IRKZML# MIRKI# KHQbQUhLa# IRRQR# ^LHJZUQWgIR# FXL@UOFIQHIR# RIHXL

    QbLHMQMQR#MIKQUhQMQJIFKI#FLR#(QNVKZULR#:a#=#I#B$

    /R# +IWgIR# _3$=ca# _3$Bc# I# _3$\c# QNHIRIFKQJa# HIRNIGKO`QJIFKIa# QR# IRKHQKo[OQR# MI

    OFGHIJIFKL#MI#GQH[Qa#QR#IRKHQKo[OQR#MI#OKIHQWXLa#I#LR#GHOKoHOLR#MI#GLF`IH[rFGOQa#nZI#RIHXL

    IJNHI[QMLR#FQR#QFmUORIR#MLR#IfIJNULR#ML#(QNVKZUL#E$

    2.2 - SOLUÇÃO NÃO-LINEAR

    )# NHLbUIJQ# IRKHZKZHQU# FXL@UOFIQH# Q# RIH# HIRLU`OML# NLMI# RIH# IfNHIRRL# MQ# RI[ZOFKI

    ^LHJQi

    ri FuF λ=c_ #######################################################################################################_3$'c

    LFMI#Fi# o# `IKLH# MQR# ^LHWQR# OFKIHFQRa# ^ZFWXL# MLR# MIRULGQJIFKLR# MLR# NLFKLR# FLMQOR# MQ

    IRKHZKZHQ#ua#I#λ#o#L#NQHTJIKHL#MI#GQH[Q#HIRNLFRm`IU#NIUL#IRGQULFQJIFKL#MI#Fra#nZI#o#ZJ

    `IKLH#MI#HI^IHrFGOQ#I#MI#JQ[FOKZMI#QHbOKHmHOQ$

    /#RLUZWXL#MQ#-nZQWXL# _3$'c#MI`I#RIH#LbKOMQ#MI# ^LHJQ# OFGHIJIFKQUa#LZ#RIpQa#NQHQ

    ZJQ# RInrFGOQ#MI# OFGHIJIFKLR#ML#NQHTJIKHL# MI# GQH[Q#∆λ1a#∆λ2,#∆λ3a$$$a# o# GQUGZUQMQ# Q

    RI[ZOFKI#RInrFGOQ#MI#OFGHIJIFKLR#MI#MIRULGQJIFKLR#FLMQORi#∆u1a#∆u2,#∆u3a$$$$$#(LJL#Fi

    o# ZJQ# ^ZFWXL# FXL@UOFIQH# MLR# MIRULGQJIFKLRa# Q# RLUZWXL# ML# NHLbUIJQ# _∆λa# ∆uc# FXL

    RQKOR^QY#a priori#Q#-nZQWXL$#_3$'c$#6IJ@RI#IFKXL#ZJQ#^LHWQ#HIROMZQU#g#MI^OFOMQ#NLHi

    c_uFFg ir −λ= ##################################################################################################_3$3c

  • ''

    )R#`mHOLR#QU[LHOKJLR#IfORKIFKIR#QNHIRIFKQJ#GLJL#NQRRL#^ZFMQJIFKQU#Q#Q`QUOQWXL

    MIRRQR# ^LHWQR# HIROMZQORa# IJ# NQHKOGZUQH# MQR# ^LHWQR# OFKIHFQR# MQ# IRKHZKZHQa# I# ZJQ# FL`Q

    IRKOJQKO`Q#NQHQ#LR#MIRULGQJIFKLR#QKHQ`oR#MQ#HIUQWXLi

    guK =δ ############################################################################################################_3$:c

    LFMI#K# o# Q# JQKHOY# MI# HO[OMIY# HINHIRIFKQKO`Q# ML# RORKIJQ# IRKHZKZHQU# I# δu# o# L# `IKLH# MI

    MIRULGQJIFKLR# HIROMZQOR$#+I[ZFML#(HOR^OIUM# _'??'c# IRRQ# IRKOJQKO`Q# MLR# MIRULGQJIFKLR

    FXL#NLMI# RIH#LbKOMQ#MI#ZJQ#JQFIOHQ#MOHIKQ# QKHQ`oR#MQ# RLUZWXL#MI# _3$:c$# "RRL# QGLFKIGI

    NLHnZI#IRRIR#MIRULGQJIFKLR#HIROMZQOR#RXL#MI^OFOMLR#GLJL#Q#RLJQ#MI#MZQR#GLJNLFIFKIRa

    LZ#RIpQi

    rg uuu δδλ+δ=δ #############################################################################################_3$=c

    LFMI#δλ#o#L#NQHTJIKHL#MI#GQH[Q#nZI#MI`I#RIH#Q`QUOQML#QL#ULF[L#ML#GOGUL#OKIHQKO`L#δug#I

    δur#RXL#LbKOMLR#QKHQ`oR#MQR#HIUQWgIRi

    gKug'−−=δ ##################################################################################################_3$BQc

    rr FKu'−=δ ###################################################################################################_3$Bbc

    )bRIH`I# nZI# IRRIR# `IKLHIR# MI# MIRULGQJIFKLR# NLMIJ# RIH# LbKOMLR# MI# ^LHJQ

    OJIMOQKQa#NLOR#Ka#g#I#Fr# RXL# GLFhIGOMLR$#/#MI^OFOWXL#MI#δλ# IJ# _3$=c#`QO#MINIFMIH#MQ

    InZQWXL# MI# HIRKHOWXL# OJNLRKQ# QMOGOLFQUJIFKI# QL# NHLbUIJQ# FXL@UOFIQH$# >JQ# MQR

    IRKHQKo[OQR#ZRQMQR#FIRRI#KHQbQUhL#NQHQ#RI#GhI[QH#QL#`QULH#MI#δλ#o#bQRIQMQ#FL#IJNHI[L#MQ

    KoGFOGQ#ML#GLJNHOJIFKL#MI#QHGL#GLFRKQFKIa#nZI#GLFRORKI#IJ#QMOGOLFQH#{#-nZQWXL#_3$'c#Q

    RI[ZOFKI#HIRKHOWXLi

    3636 U∆=λ∆+∆∆ rr FFuu ###################################################################################_3$\c

    LFMIa#∆U# o# L# GLJNHOJIFKL# MI# QHGL# MQ# KHQpIKkHOQ# MI# InZOUVbHOL$# /# QMOWXL# MI# _3$\c# QL

    RORKIJQ#NIHJOKI#nZI#RI#^QWQ#L#QpZRKI#FL#NQHTJIKHL#MI#GQH[Q#λ#MZHQFKI#L#GOGUL#OKIHQKO`La

  • '3

    NLRRObOUOKQFMLa# MIRRQ# ^LHJQa# nZI# RI# ZUKHQNQRRI# NLRRV`IOR# NLFKLR# GHVKOGLR# IfORKIFKIR# FLR

    GQJOFhLR#NHOJmHOLR#I#RIGZFMmHOLR$#>J#FL`L#IRKQML#MI#InZOUVbHOL#o#IRKQbIUIGOML#QNkR#Q

    HIQUOYQWXL#MI#ZJQ#RoHOI#MI#OKIHQWgIR$#/#OKIHQWXL#j#^LHFIGI#LR#RZb@OFGHIJIFKLR#δλ#I#δua#I

    NLHKQFKLa# QNkR# IRRQ# OKIHQWXLa# LR# OFGHIJIFKLR# MI# GQH[Q# I# MIRULGQJIFKL# RXL# IRGHOKLR# MQ

    RI[ZOFKI#^LHJQi

    jc'j_j δλ+λ∆=λ∆ − #########################################################################################_3$EQcjc'j_j uuu δ+∆=∆ − #######################################################################################_3$Ebc

    /#GLHHIWXL#ML#NQHTJIKHL#MI#GQH[Qa#δλj # #xFOGQ#OFGk[FOKQ#MQ#-nZQWXL#_3$=c# a#o

    MIKIHJOFQMQ#RI[ZOFML#ZJQ#MQR#IRKHQKo[OQR#MI# OKIHQWXL# ^LHFIGOMQR#FQ#+IWXL# _3$Bca#LFMI

    RIHm#OFKHLMZYOMQ#ZJQ#InZQWXL#MI#HIRKHOWXL#nZI#MI`I#RIH#HIRNIOKQMQ#Q#GQMQ#OKIHQWXL$

    *ZJ# GLFKIfKL# GLJNZKQGOLFQUa# o# `QFKQpLRL# OFKHLMZYOH# Q# InZQWXL# MI# HIRKHOWXL

    RI[ZOFML#QR#MZQR#IKQNQR#MI#RLUZWXL#QNHIRIFKQMQR#Q#RI[ZOHi

    '$ /# NQHKOH# MQ# xUKOJQ# GLF^O[ZHQWXL# MI# InZOUVbHOL# MQ# IRKHZKZHQa# o# RIUIGOLFQML# ZJ

    OFGHIJIFKL# MI# GQH[Qa# MI^OFOML# QnZO# GLJL# OFGHIJIFKL# OFOGOQU# ML# NQHTJIKHL# MI# GQH[Qa

    ∆λAa#NHLGZHQFML#RQKOR^QYIH#QU[ZJQ#InZQWXL#MI#HIRKHOWXL#OJNLRKQ#QL#NHLbUIJQ#_-nZQWXL

    3$\a# NLH# IfIJNULc$# /NkR# Q# RIUIWXL# MI# ∆λAa# MIKIHJOFQ@RI# L# OFGHIJIFKL# OFOGOQU# MLR

    MIRULGQJIFKLR#FLMQOR#∆uA#QKHQ`oR#MQ#InZQWXLi

    6AA uu δλ∆=∆ ##################################################################################################_3$Pc

    LFMIi

    rFKu'

    6−=δ ####################################################################################################_3$?c

    RIFML#nZI 6uδ #o#L#`IKLH#MLR#MIRULGQJIFKLR# KQF[IFGOQOR$#/R#QNHLfOJQWgIR#∆λA#I#∆uA

    GQHQGKIHOYQJ# Q# GhQJQMQ# solução incremental predita$# )R# MIKQUhIR# MIRRQ# IKQNQ# MI

    RLUZWXL#RXL#^LHFIGOMLR#FQ#+IWXL#_3$=c

  • ':

    3$ *Q# RI[ZFMQ# IKQNQ# MI# RLUZWXLa# NHLGZHQ@RIa# QKHQ`oR# MI# OKIHQWgIR# ML# KONL#*ItKLFa

    GLHHO[OH#Q#RLUZWXL#OFGHIJIFKQU#OFOGOQUJIFKI#NHLNLRKQ#FQ#IKQNQ#QFKIHOLHa#GLJ#L#OFKZOKL#MI

    HIRKQZHQH# L# InZOUVbHOL# MQ# IRKHZKZHQ# L# JQOR# HmNOML# NLRRV`IU$# +I# QR# OKIHQWgIR# HIQUOYQMQR

    IF`LU`IJ#FXL#Rk#LR#MIRULGQJIFKLR#ua#JQR#KQJboJ#L#NQHTJIKHL#MI#GQH[Q#λa#IFKXL#ZJQ

    InZQWXL#QMOGOLFQU#MI#HIRKHOWXL#o#HInZIHOMQ$#/#^LHJQ#MIRRQ#InZQWXL#MI#HIRKHOWXL#o#L#nZI

    MORKOF[ZI#QR#`mHOQR#KoGFOGQR#MI#RLUZWXL$#/#+IWXL#_3$Bc#QNHIRIFKQ#QU[ZJQR#IRKHQKo[OQR#MI

    OKIHQWXL#ZRQMQR#FIRKI#KHQbQUhL$

    /#

  • '=

    '$#(LF^O[ZHQWXL#OFOGOQUi#Ku#I#Kλ

    3$#,I^OFOWXL#MQ#RLUZWXL#NHIMOKQi# AA #I# u∆λ∆

    :$#"KIHQWgIRi#j#q#'a#3a…a#"Jmf

    =$#!IHO^OGQ#Q#GLF`IH[rFGOQi# s c'_c'_' ζλζ ≤∆=−−

    rFgkk

    +OJi#NQHI#L#GOGUL#MI#OKIHQWgIRa#RO[Q#NQHQ#L#NQRRL#E*XLi#GQUGZUI# jH

    jjj uuu g δδλ+δ=δ

    B$#/KZQUOYQWXL#MQR#`QHOm`IORiO$#OFGHIJIFKQORi# jc'j_j δλ+λ∆=λ∆ − ####I#### jc'j_j uuu δ+∆=∆ −

    OO$#KLKQORi## jKjKK λ∆+λ=λ∆+ ####I#### jKjKK uuu ∆+=∆+

    \$#.IKLHFI#QL#NQRRL#:

    E$#

  • 'B

    /# nZQUOMQMI# MLR# HIRZUKQMLR# LbKOMLR# IJ# ZJQ# QFmUORI# FZJoHOGQ# MINIFMI

    ^ZFMQJIFKQUJIFKI# MQ# ^LHJZUQWXL# FXL@UOFIQH# ZKOUOYQMQa# LZ# IJ# LZKHQR# NQUQ`HQRa# MQ

    MIKIHJOFQWXL# MQ#JQKHOY# MI# HO[OMIY#e# I# ML# `IKLH# MI# ^LHWQR# OFKIHFQR#

  • '\

    }A

    fAZ'K

    `'K

    Z3K

    K

    Kz∆K

    `3K`'Kz∆K

    `3Kz∆KZ'Kz∆K

    Z3

    %28

    d28

    Kz∆K

    I

    I

    II I

    II

    I

    K#q#A

  • 'E

    %28

    d28}A

    fA

    K

    Kz∆K

    ∆Z'

    ∆Z3 fK}K

    ∆`'

    ∆`3

    K#q#A

    I

    I

    I

    I

    K+∆K

    K+∆K

    K+∆K

    K+∆K

  • 'P

    ^LH#^LHKIJIFKI#FXL@UOFIQH#_OOOc#RIH#GQNQY#MI#IRGLUhIH#L#ROFQU#GLHHIKL#NQHQ#L#OFGHIJIFKLa

    OFKHLMZYOFML#JIMOMQR#GQNQYIR#MI#MIKIGKQH#nZQFML#LR#NLFKLR#UOJOKIR#RXL#ZUKHQNQRRQMLR$

    /# RI[ZOH# RXL# QNHIRIFKQMQR# QU[ZJQR# IRKHQKo[OQR# MI# OFGHIJIFKL# MI# GQH[Q# nZI

    RQKOR^QYIJ#IRRIR#HInZIHOJIFKLR$

    2.4.1 – Incremento do Comprimento de Arco

    (LJL#NHLNLRKL#NLH#(HOR^OIUM#_'??'ca#L#OFGHIJIFKL#ML#GLJNHOJIFKL#MI#QHGL#Q#RIH

    QMLKQML# GLJL# NQHTJIKHL# MI# GLFKHLUI# FL# NQRRL# MI# GQH[Q# GLHHIFKI# NLMI# RIH# MI^OFOML

    GLJLi

    3s'

    KMK

    ""#U#U

    ∆=∆ ###############################################################################################_3$'Ac

    LFMI# U#I##UK ∆∆ #HINHIRIFKQJ#LR#OFGHIJIFKLR#ML#GLJNHOJIFKL#MI#QHGL#FL#NQRRLR#MI#GQH[Q

    QFKIHOLH#_`QULH#GLFhIGOMLc#I#FL#NQRRL#MI#GQH[Q#GLHHIFKI#_OFGk[FOKQca#HIRNIGKO`QJIFKI#"Mo#L#FZJIHL#MI#OKIHQWgIR#MIRIpQMQR#NQHQ#L#NHLGIRRL#OKIHQKO`L#GLHHIFKIa#IRNIGO^OGQML#NIUL

    ZRZmHOLa#I# "K #o#L#FZJIHL#MI#OKIHQWgIR#nZI#^LHQJ#FIGIRRmHOQR#NQHQ#GLF`IH[OH#FL#NQRRL#MI

    GQH[Q#QFKIHOLH$

    /KHQ`oR# MQ# -nZQWXL# _3$'Ac# I# MQ# GLFMOWXL# MI# HIRKHOWXL# IRGHOKQ# NQHQ# Q# RLUZWXL

    OFGHIJIFKQU#OFOGOQUi

    ∆ ∆ ∆u uA A 36 U= ###############################################################################################_3$''c

    GhI[Q@RI#^QGOUJIFKIa#ZRQFML@RI#Q#-nZQWXL# _3$Pc#IJ#_3$''ca# {# IfNHIRRXL#ML# OFGHIJIFKL

    OFOGOQU#ML#NQHTJIKHL#MI#GQH[Qi

    TT uu δδ

    ∆±=λ∆6

    A U ###########################################################################################_3$'3c

    )#GHOKoHOL#ZKOUOYQMLa#FLR#IfIJNULR#ML#(QNVKZUL#Ea#NQHQ#IRGLUhIH#L#ROFQU#GLHHIKL#FQ

    IfNHIRRXL#_3$'3c#o#L#RZ[IHOML#NLH#dQF[#I#+hOIh#_'??Ac#I#dQF[#I#eZL#_'??=ca#bQRIQFML@

    RI#FL#ROFQU#ML#NQHTJIKHL#2+Sa#nZI#RIHm#QNHIRIFKQML#FQ#RIWXL#RI[ZOFKI$

  • '?

    *L#NHL[HQJQ#MIRIF`LU`OML#FIRRI#KHQbQUhLa#L#ZRZmHOL#MI`I#IRNIGO^OGQH#∆λ'A #GLJL

    MQML#MI#IFKHQMQa#RIFML#IRKI#`QULH#ZRQML#IJ#RI[ZOMQ#NQHQ#GQUGZUQH#∆u'A#QKHQ`oR#MI#_3$Pc$

    +ZbRKOKZOFML@RIa#IFKXLa#∆uA#FQ#-nZQWXL#_3$''c#GhI[Q@RI#Q# ∆U' $#SQHQ#LR#NQRRLR#MI#GQH[Q

    RI[ZOFKIRa#GQUGZUQ@RI#QZKLJQKOGQJIFKI#∆U#QKHQ`oR#MI#_3$'Ac$

    2.4.2 – Incremento Baseado no Parâmetro GSP

    >JQ#IRKHQKo[OQ# bQRIQMQ# FQ# OFKHLMZWXL# MI# ZJ#NQHTJIKHL# MI# HO[OMIY# [IFIHQUOYQML

    ^LO#QMLKQMQ#NLH#dQF[#I#+hOIh# _'??Ac# I#dQF[#I#eZL# _'??=c#NQHQ# UOJOKQH#L# OFGHIJIFKL

    OFOGOQU# ML# NQHTJIKHL# MI# GQH[Q$# )# JoKLML# MI# RLUZWXL# o# MIFLJOFQML# MI# IRKHQKo[OQ# MI

    GLFKHLUI# MI# MIRULGQJIFKL# [IFIHQUOYQML$# -J# KIHJLR# [IHQORa# dQF[# I# eZL# _'??=c

    NHLNZRIHQJ#Q#RI[ZOFKI#InZQWXL#NQHQ#Q`QUOQH#L#NQHTJIKHL#MI#GQH[Qi

    c9_j

    '## j[6

    jH

    6j uC

    uCδ−

    +δ=δλ #####################################################################_3$':c

    LFMI# C# I# j# RXL# GLFRKQFKIR# Q# RIHIJ# MI^OFOMQR# I# 9# o# MIFLJOFQML# MI# MIRULGQJIFKL

    [IFIHQUOYQML#MQ#InZQWXL#MI#HIRKHOWXL$#dQF[#I#+hOIh#_'??Aca#NLH#IfIJNULa#NHLNZRIHQJ#LR

    RI[ZOFKIR#`QULHIRi

    C#q#∆λA#Kδur######I#######j#q#A###############################################################################_3$'=c

    I#QRROJ#_3$':c#NLMI#RIH#HIIRGHOKL#GLJLi

    rr

    r

    uu

    uu

    δδλ∆δδλ∆

    δλ = KK

    #A

    6[

    6#A@#j9

    ######################################################################################_3$'Bc

    SQHQ# LbKIFWXL# MQ# RLUZWXL# NHIMOKQ# Aλ∆ a# ^QY@RI# Aj[ =δu # I#A#j λ∆δλ = # FQ# InZQWXL

    QFKIHOLHa#I#MIRRQ#^LHJQ#GhI[Q@RI#Qi

    rr uu δδ±=λ∆

    #9#### 6

    AK

    #####################################################################################_3$'\c

  • 3A

    dQF[#I#+hOIh#_'??Ac#RZ[IHOHQJ#NQHQ#9#Q#RI[ZOFKI#HIUQWXLi

    H'63AA

    A6A #c_#####9

    ''' uuuu r δδλ∆=∆∆= ##############################################################_3$'Ec

    I#MIRRQ#^LHJQ#NLMI@RI#IRGHI`IH# Aλ∆ #GLJL#RIFMLi

    H6

    H'6

    AA

    ##

    #####K

    ''

    uu

    uu

    r

    r

    δδδδ

    λ∆±=λ∆ #########################################################################_3$'Pc

    /MOGOLFQUJIFKIa# GLFROMIHQFML@RI# L# NQHTJIKHL# MI# HO[OMIY# [IFIHQUOYQML# _2+Sc# ML

    RORKIJQ#GLJL#RI[ZIi

    rr

    rr

    uu

    uu

    δδδδ= 6'6'

    K

    ###+S2 ###########################################################################################_3$'?c

    NLMI@RIa#NLHKQFKLa#HIIRGHI`IH#_3$'Pc#MQ#RI[ZOFKI#^LHJQi

    AA #2+S#### ' λ∆±=λ∆ ###################################################################################_3$3Ac

    +I[ZFML#LR#QZKLHIR#GOKQMLRa#L#ROFQU#ML#NQHTJIKHL#MI#HO[OMIY#[IFIHQUOYQML#MINIFMI

    IfGUZRO`QJIFKI#MLR#`IKLHIR# ruδK #I# ruδ a#GLF^LHJI#JLRKHQ#Q#-nZQWXL#_3$'?c$

  • 3'

    2.5 – ESTRATÉGIAS DE ITERAÇÃO

    /# MIKIHJOFQWXL# ML# NQHTJIKHL# MI# GQH[Q# OKIHQKO`La# δλ# o# ^ZFWXL# MI# ZJQ# MQMQ

    IRKHQKo[OQ#MI#OKIHQWXLa#LZ#InZQWXL#MI#HIRKHOWXL#OJNLRKQ#QL#NHLbUIJQa#nZI#KIJ#Q#^ZFWXL

    MI# LKOJOYQH# Q# GLF`IH[rFGOQ# ML# NHLGIRRL# OKIHQKO`L$# /# RI[ZOH# RXL# QNHIRIFKQMQR# MZQR

    IRKHQKo[OQR#bQRKQFKI#I^OGOIFKIR#nZI#RIHXL#ZKOUOYQMQR#FLR#IfIJNULR#ML#(QNVKZUL#E$

    2.5.1 – Comprimento de Arco Cilíndrico

    (HOR^OIUM# _'?P'c# I# .QJJ# _'?P'# I# '?P3c# NHLNZRIHQJa# nZIa# Q# GQMQ# OKIHQWXLa# Q

    RI[ZOFKI#InZQWXL#MI#HIRKHOWXL#RIpQ#RQKOR^IOKQi

    36 U∆=∆∆ uu ##################################################################################################_3$3'c

    +ZbRKOKZOFML# _3$=c# IJ# _3$Ebc# I# L# HIRZUKQML# FQ# InZQWXL# QFKIHOLHa# GhI[Q@RI# Q# ZJQ

    InZQWXL#nZQMHmKOGQ#IJ#δλa#LZ#RIpQi

    / 4 (δλ δλ3 A+ + = #######################################################################################_3$33c

    LFMIa#LR#GLI^OGOIFKIR#/a#4#I#(#KrJ#Q#RI[ZOFKI#^LHJQi

    rr uu δδ=6/ ###################################################################################################_3$3:Qc

    c_34 jc'j_6 gr uuu δ+∆δ=− ###############################################################################_3$3:bc

    3jc'j_6jc'j_ Uc_c_( ∆−δ+∆δ+∆= −− gg uuuu ###################################################_3$3:Gc

    (LJ#Q#HIRLUZWXL#MI#_3$3:c#GhI[Q@RI#QLR#MLOR#`QULHIR#δλ'#I#δλ3a#MI#^LHJQ#nZI#RI

    MI`I#IRGLUhIH#IFKHI#QR#RLUZWgIRi

    rg1 uuuu δδλ+δ+∆=∆−

    'jc'j_ ########################################################################_3$3=Qc

  • 33

    rg2 uuuu δδλ+δ+∆=∆−

    3jc'j_ #######################################################################_3$3=bc

    QnZIUQ#nZI#JQOR#RI#QNHLfOJQ#MQ#RLUZWXL#OFGHIJIFKQU#MQ#OKIHQWXL#QFKIHOLHa#∆u(k-1)$#-RRQ

    IRGLUhQ#MI`I#NHI`IFOH#ZJ#NLRRV`IU# HIKLHFLa#L#nZI#^QHOQ#Q#RLUZWXL#HI[HIMOH#QL# ULF[L#ML

    GQJOFhL#pm#GQUGZUQML$#>J#NHLGIMOJIFKL#ZKOUOYQMLa#GLFRORKI#IJ#RI#QGhQH#L#JIFLH#TF[ZUL

    IFKHI#∆uk#I#∆u(k-1)$#"RKL#InZO`QUI#Q#QGhQH#L#JmfOJL#GLRRIFL#ML#TF[ZULi

    3

    6c'j_

    3a'3

    j6c'j_6c'j_

    3

    j6c'j_

    3a' UUUGLR

    δ∆δλ+

    δ+∆∆=

    ∆∆=θ

    −−−−rg uu

    uuuuu######_3$3Bc

    (LJL# _3$33c# o# ZJQ# InZQWXL# nZQMHmKOGQa# IUQ# NLMIHm# KIH# HQVYIR# OJQ[OFmHOQR# RI

    c/(=4_ 3 − #^LH#JIFLH#nZI#YIHL$#-RRQ#ROKZQWXL#NLMI#IfORKOH#nZQFML#L#OFGHIJIFKL#OFOGOQU

    ML#NQHTJIKHL#MI#GQH[Q#^LH#JZOKL#[HQFMIa#LZ#RI#Q#IRKHZKZHQ#IfObOH#JxUKONULR#GQJOFhLR#MI

    InZOUVbHOL#IJ#KLHFL#MI#ZJ#NLFKL#_DIIj#I#6QFa#'?P=c$

    2.5.2 – Iteração usando Deslocamento Generalizado

    dQF[#I#eZL#_'??=c#GhI[QHQJ#{#IfNHIRRXL#NQHQ#Q#GLHHIWXL#ML#NQHTJIKHL#MI#GQH[Q

    ^QYIFML#9#q#A#FQ#InZQWXL#MI#HIRKHOWXL#MQMQ#IJ#_3$'Bca#LZ#RIpQi

    rr

    gr

    uu

    uu

    δδ

    δδ−=δλ 6K

    j6#jKj

    #

    ### #########################################################################################_3$3\c

  • 3:

    2.5.3 – Iteração usando Resíduo Ortogonal

    >JQ#LZKHQ#IRKHQKo[OQ#MI#GLHHIWXL#ML#NQHTJIKHL#MI#GQH[Q#MZHQFKI#L#GOGUL#OKIHQKO`L

    ^LO#NHLNLRKQ# HIGIFKIJIFKI#NLH#eHIFj# _'??:c$#)# ^QKLH# MI# GLHHIWXL# o# LbKOML# Q# NQHKOH# MQ

    GLFMOWXL# MI# LHKL[LFQUOMQMI# ML# `IKLH# HIRVMZL# MQ# OKIHQWXL# GLHHIFKI# IJ# HIUQWXL# QL

    OFGHIJIFKL#MI#MIRULGQJIFKL#GLHHIRNLFMIFKI$#/#RI[ZOH#RIHXL#MIRGHOKLR#LR#NQRRLR#bmROGLR

    ML#QU[LHOKJL#FXL@UOFIQH#NHLNLRKL#NLH#eHIFj$

    DQOR#ZJQ#`IY#Q#GLF^O[ZHQWXL#MI#InZOUVbHOL# uK #I# rFλK #RIHm#L#NLFKL#MI#NQHKOMQ#NQHQ

    LbKIFWXL# MLR# MIRULGQJIFKL# I# NQHTJIKHL# MI# GQH[Q# FQ# GLF^O[ZHQWXL# K##K ∆+ a# LZ# RIpQi

    uK##K ∆+ #I# rFλ∆+ K##K $#/#RLUZWXL#OFGHIJIFKQU#NHIMOKQ#o#LbKOMQ#QRRZJOFML#L#OFGHIJIFKL#MI

    GQH[Q# rFAλ∆ #I#HIRLU`IFML@RI#L#RORKIJQ#MI#InZQWgIR#QbQOfLi

    rFuKAA λ∆=∆ ############################################################################################_3$3Ec

    )bRIH`I#nZI#FIRRI#FL`L#IRKQML#MI#MIRULGQJIFKL# AK uu ∆+ # QR# ^LHWQR# OFKIHFQR#MQ

    IRKHZKZHQ#NLMIJ#RIH#MIKIHJOFQMQRi# c_ AK uuFi ∆+ $#(LJL#L#NHLbUIJQ#o#FXL@UOFIQHa#IRRQR

    ^LHWQR# FXL# IRKQHXL# IJ# InZOUVbHOL# GLJ# QR# RLUOGOKQWgIR# IfKIHFQRi# rFc_AK λ∆+λ $# )

    InZOUVbHOL#ML#RORKIJQ#IRKHZKZHQU#o#IFKXL#IRKQbIUIGOML#NLH#ZJQ#RInrFGOQ#MI#OKIHQWgIR$#/

    IRKHQKo[OQ#MI#OKIHQWXL#Q#RIH#QNHIRIFKQMQ#RI#NHILGZNQHm#NHOJIOHL#IJ#QpZRKQH#L#OFGHIJIFKL

    MI#GQH[Q# rFAλ∆ a#NQHQa#IJ#RI[ZOMQa#GQUGZUQH#L#`IKLH#HIRVMZL#g#nZI#RIHm#ZRQML#FL#GmUGZUL

    MLR#MIRULGQJIFKLR#OKIHQKO`LR#δu$

    )bRIH`I#nZIa#FL# GLJIWL#MQ# OKIHQWXL# ja# L# `IKLH# MLR# MIRULGQJIFKLR# OFGHIJIFKQORc'j_ −∆u # o# GLFhIGOMLa# MI# ^LHJQ# nZI# QR# ^LHWQR# OFKIHFQR# ML# RORKIJQ# c_ c'j_K −∆+ uuFi

    NLMIJ# RIH# LbKOMQR$#)# `IKLH# MI# ^LHWQR# IfKIHFQR# KLKQOR# GLHHIRNLFMIFKI# Q# IRKI# IRKQML# MI

    MIRULGQJIFKL# NLMI# RIH# IRGHOKL# MQ# ^LHJQ# rFc_A

    jK λ∆ξ+λ a# LFMI# L# ^QKLH# MI# IRGQUQ# jξ

    MI`IHm#RIH#LbKOML#GLF^LHJI#NHLGIMOJIFKL#MIRGHOKL#Q#RI[ZOH$

    ,I# QGLHML# GLJ# Q# KILHOQ# QNHIRIFKQMQa# L# `IKLH# MQR# ^LHWQR# HIROMZQOR# g# NLMI# RIH

    MI^OFOML#NLHi

  • 3=

    c_c_ c'j_KAjK −∆+−λ∆ξ+λ= uuFFg ir ########################################################_3$3Pc

    LZa

    rFggA

    jw λ∆ξ+= ###########################################################################################_3$3?c

    LFMIa

    c_w c'j_KK −∆+−λ= uuFFg ir #########################################################################_3$:Ac

    o# L# `IKLH# MQR# ^LHWQR# HIROMZQOR# GLHHIRNLFMIFKI# QLR# MIRULGQJIFKLR# MQ# xUKOJQ# OKIHQWXL

    NHLGIRRQMQ# FL# NQRRL# GLHHIFKI# I# QL# NQHTJIKHL# MI# GQH[Q# MQ# xUKOJQ# GLF^O[ZHQWXL# MI

    InZOUVbHOL$

    ,I#QGLHML#GLJ#eHIFj#_'??Bca#L# ^QKLH#MI#IRGQUQ# jξ #o#LbKOML#GLFROMIHQFML@RI#LR

    RI[ZOFKIR#QH[ZJIFKLR$#/#IfORKrFGOQ#MI#^LHWQR#HIROMZQOR#g#OHm#OFMZYOH#L#GmUGZUL#QMOGOLFQU

    MI#MIRULGQJIFKLR#_δuc$#/RRZJOFML#QnZO#LR#MIRULGQJIFKLR#OFGHIJIFKQOR# c'j_ −∆u #GLJL#Q

    JIUhLH# QNHLfOJQWXL# FQ# MOHIWXL# MLR# MIRULGQJIFKLR# OFGHIJIFKQOR# `IHMQMIOHLRa# KIJ@RI

    IFKXL#nZI#Q#JQ[FOKZMI#MIRRI#`IKLH#OHm#QZJIFKQH#LZ#MOJOFZOH#MI#QGLHML#GLJ#L#ROFQU#ML

    NHLMZKL#IRGQUQH#IFKHI# c'j_6 −∆ug a#LZ#RIpQa#GLJ#Q#NHLpIWXL#ML#`IKLH#HIRVMZL#FL#`IKLH#MLR

    MIRULGQJIFKLR# OFGHIJIFKQOR$# 6IJ@RI# IFKXL# nZI# ZJQ# IRGLUhQ# kKOJQ# ML# `IKLH# MLR

    MIRULGQJIFKLR#OFGHIJIFKQOR#QGLFKIGI#RI#Q#RI[ZOFKI#GLFMOWXL#^LH#`IHO^OGQMQi

    Ac'j_6 =∆ −ug #############################################################################################_3$:'c

    +ZbRKOKZOFML# Q# ^LHWQ# HIROMZQU# LbKOMQ# FQ# -nZQWXL# _3$3?c# FQ# GLFMOWXL# MI

    LHKL[LFQUOMQMI#QFKIHOLHa#GhI[Q@RI#L#^QKLH#MI#IRGQUQ#NHLGZHQMLi

    c'j_6A

    c'j_6

    j

    w−

    ∆λ∆∆−=ξ

    uF

    ug

    r

    ##################################################################################_3$:3c

  • 3B

    ,IRRQ#^LHJQa#L#`IKLH#MQR#^LHWQR#HIROMZQORa#QNkR#L#QpZRKI#FL#NQHTJIKHL#MI#GQH[Qa#o

    GQUGZUQML#QKHQ`oR#MQ#-nZQWXL#_3$3?c$#(LFhIGIFML#IRKI#`IKLHa#Q`QUOQ@RI#LR#MIRULGQJIFKLR

    OKIHQKO`LR#QKHQ`oR#MQ#RI[ZOFKI#IfNHIRRXLi

    guK =δ j ####################################################################################################_3$::c

    *L#^OFQU#MI#GQMQ#OKIHQWXLa#QKZQUOYQJ@RI#LR#MIRULGQJIFKLR#OFGHIJIFKQOR#QKHQ`oR#MQR

    -nZQWgIR#_3$EQ#I#3$Ebc$

    eHIFj#_'??Bc#JLRKHLZ#nZI#Q#GLFMOWXL#MI#LHKL[LFQUOMQMI#_3$:'c#NLMIHOQ#RIH#ZRQMQ

    NQHQ#RI#LbKIH#ZJQ#QKZQUOYQWXL#MQ#JQKHOY#MI#HO[OMIY#Q#GQMQ#OKIHQWXLa#RI[ZOFML#LR#JoKLMLR

    nZQRO@*ItKLFa# IJ# NQHKOGZUQH# JoKLMLR# ML# KONL# 4HL}MIF@

  • 3\

    uF

    uu

    uF

    uFIK

    uF

    FuIK

    ii

    i

    i

    i

    ∆∆∆∆+

    ∆∆∆∆

    ∆∆∆∆

    −= −− 66

    6

    6'K

    6

    6' ######################################_3$:\c

    -J#QNUOGQWgIR#ML#D-

  • 3E

    -RRQ#IRKHQKo[OQ#MI#QKZQUOYQWXL#LZ#LbKIFWXL#MLR#MIRULGQJIFKLR#OKIHQKO`LR#o#bQRKQFKI

    I^OGOIFKI#NLOR#IF`LU`I#L#GmUGZUL#QMOGOLFQU#MI#QNIFQR#ZJ#NHLMZKL# OFKIHFLi# ug ww6δ $#*LKI

    nZI#L# NHLMZKL# OFKIHFL# ML# MIFLJOFQMLH# pm# ^LO# Q`QUOQML# GLJL#NQHKI# MLR# NHLGIMOJIFKLR

    FIGIRRmHOLR#NQHQ#LbKIFWXL#ML#^QKLH#MI#IRGQUQ# jξ a#-nZQWXL#_3$:3c.

    -J#nZQUnZIH#JoKLML#nZQRO@*ItKLFa#Q#JQKHOY#MI#HO[OMIY#QKZQUOYQMQa#RQKOR^QYIFML#Q

    HIUQWXL# _3$:=ca# o# ZRQMQ# FQ# MIKIHJOFQWXL# MLR# MIRULGQJIFKLR# OKIHQKO`LR# δZ# QKHQ`oR# MQ

    -nZQWXL#_3$:Pc$#"RRL#UI`Q#{#RI[ZOFKI#HIUQWXL#IFKHI#LR#NHLMZKLR#IRGQUQHIRi

    guuKuuFi666 ∆=δ∆=δ∆ #######################################################################_3$='c

    )bRIH`I# IFKXL# nZI# L# ZRL# MQ# HIUQWXL# _3$:=c# IJ# GLFIfXL# GLJ# Q# GLFMOWXL# MI

    LHKL[LFQUOMQMI#_3$:'ca#OJNUOGQ#FZJQ#FL`Q#GLFMOWXL#MI#LHKL[LFQUOMQMIa#LZ#RIpQi

    Aw6 =δ=δ∆ uguFi #######################################################################################_3$=3c

    /# IRKHQKo[OQ# MI# RLUZWXL# FXL@UOFIQH# NHLNLRKQ# NLH# eHIFj# _'??:@'??Bc# o

    GQHQGKIHOYQMQ#NLHKQFKLa#NIUL#ZRL#MI#MZQR#GLFMOWgIR#MI#LHKL[LFQUOMQMIi#Q#NHOJIOHQ#IFKHI#L

    OFGHIJIFKL#MI#MIRULGQJIFKL# u∆ # I# L# HIRVMZL#MQ# OKIHQWXL#GLHHIFKI# [# I# Q#LZKHQ# IFKHI#L

    `IKLH#MQR#^LHWQR#OFKIHFQR#OFGHIJIFKQU# gw #I#L#FL`L#MIRULGQJIFKL#OKIHQKO`L# uδ $

    2.6 – CRITÉRIOS DE CONVERGÊNCIA

    )#NHLGIRRL#OKIHQKO`L#MIRGHOKL#KIHJOFQ#OFMOGQFML#ZJQ#FL`Q#NLROWXL#MI#InZOUVbHOL#NQHQ#Q

    IRKHZKZHQ# IJ# QFmUORI# nZQFML# ZJ# MLR# MLORa# LZ# LR# MLOR# GHOKoHOLR# MI# GLF`IH[rFGOQ

    QNHIRIFKQMLR#QbQOfL#^LHIJ#QKIFMOMLRi

    _Oc L#NHOJIOHL#GHOKoHOL#MI#GLF`IH[rFGOQ#o#bQRIQML#IJ#HIUQWgIR#MI#^LHWQR#I#o#GQUGZUQML

    FL#OFVGOL#MQ#OKIHQWXL#GLHHIFKI#ZKOUOYQFML#NQHTJIKHLR#MQ#OKIHQWXL#QFKIHOLH$#-UI#o#MI^OFOML

    GLJL#RI[ZIi

  • 3P

    ζ≤λ∆

    =ζ−

    rF

    gc'j_

    c'j_

    ' ########################################################################################_3$=:c

    LFMI# c'j_ −g # o# O[ZQU# {# FLHJQ# IZGUOMOQFQ# ML# `IKLH# MQR# ^LHWQR# MIRInZOUObHQMQRa# nZI# o

    GQUGZUQMQ#ZRQFML@RI#L#NQHTJIKHL#MI#GQH[Q#I#LR#MIRULGQJIFKLR#FLMQOR#KLKQOR#MQ#OKIHQWXL

    QFKIHOLHa rFc'j_ −λ∆ # o# Q# FLHJQ# IZGUOMOQFQ# ML# `IKLH# MI# OFGHIJIFKL# MI# GQHHI[QJIFKL

    IfKIHFL#I#ζ#o#ZJ#^QKLH#MI#KLUIHTFGOQ#^LHFIGOML#NIUL#ZRZmHOL#ML#NHL[HQJQ#GLJL#MQML#MI

    IFKHQMQ$

    _OOc L# RI[ZFML# GHOKoHOL# MI# GLF`IH[rFGOQ# LbIMIGI# Q# HIUQWgIR# MI# MIRULGQJIFKLR# I# o

    RIJNHI#`IHO^OGQML#FL#^OFQU#MQ#OKIHQWXL#GLHHIFKI$#-UI#o#MI^OFOML#NLHi

    ζ≤∆

    δ=ζ

    j3 u

    u################################################################################################_3$==c

    LFMI# δu # o# Q# FLHJQ# IZGUOMOQFQ# MLR# MIRULGQJIFKLR# OKIHQKO`LR# _HIROMZQORca# ju∆ # o# Q

    FLHJQ#-ZGUOMOQFQ#MLR#MIRULGQJIFKLR#OFGHIJIFKQORa#nZI#RXL#LbKOMLR#QNkR#Q#GLHHIWXL#ML

    NHLGIRRL#OKIHQKO`La#I#ζ#RI[ZI#Q#JIRJQ#MI^OFOWXL#ML#GHOKoHOL#QFKIHOLH$

    _OOOc L# KIHGIOHL# GHOKoHOL# MI# GLF`IH[rFGOQ# GLFRORKI# IJ# LbIMIGIH# Q# QJbQR# QR# HIUQWgIR

    _^LHWQR#I#MIRULGQJIFKLRc#MQMQR#IJ#_3$=:c#I#_3$==ca#QRROJ#IRKI#GHOKoHOL#o#`IHO^OGQML#RIi

    ζ≤ζζ≤ζ 3' ###I### #############################################################################################_3$=Bc

    LFMI# 3' ###I####a ζζζ #RXL#MI^OFOMLR#FLR#OKIFR#_Oc#I#_OOc$

  • :KOUOYQFML@RI# L# NHOFGVNOL# MQ# IFIH[OQ# NLKIFGOQU# KLKQU# IRKQGOLFmHOQa# GhI[Q@RIa# FQ

    +IWXL#_:$:ca#{R#InZQWgIR#MI#InZOUVbHOL#ML#RORKIJQ#IRKHZKZHQU$

  • :A

  • :'

    /GIOKQFML#Q#hONkKIRI#MQ#KILHOQ#MI#`O[QR#MI#4IHFLZUUO#MI#nZI#QR#RIWgIR#KHQFR`IHRQOR

    OFOGOQUJIFKI#NUQFQR#NIHJQFIGIJ#NUQFQR#QNkR#Q#MI^LHJQWXLa#KIJ@RIa#GLF^LHJI#OUZRKHQML

    FQ#

  • :3

    QR#KHQFRUQWgIR#MI#GLHNL#HV[OML$#)#QNQHIGOJIFKL#MI#MI^LHJQWXL#NQHQ#QR#HLKQWgIR#MI

    GLHNL# HV[OML# RI# MI`I# {# QMJORRXL# MI# Mfs`M∆=θ∆ # FL# GmUGZUL# MQR# ^ZFWgIR# MI

    OFKIHNLUQWXLa#nZI#Rk#o#`mUOMQ#NQHQ#L#GQRL#MI#NInZIFQR#HLKQWgIR

    _OOc NHLGZHQFML# RQKOR^QYIH# QNIFQR# QR# GLFMOWgIR# MI# GLFKOFZOMQMIa# RXL# QMLKQMQRa# NLH

    ROJNUOGOMQMIa# QNIFQR# ^ZFWgIR# UOFIQHIR# NQHQ# QNHLfOJQH# L# MIRULGQJIFKL# QfOQU#∆Z$

    (HOR^OIUM#_'??'c#JLRKHQ#nZIa#HO[LHLRQJIFKIa#GLJ#∆`#QRRZJOML#GxbOGLa#MI`IHOQ@RI

    QMLKQH#ZJQ#QNHLfOJQWXL#MI#nZOFKL#[HQZ#NQHQ#∆Z#MI#JLML#Q#bQUQFGIQH#QR#^ZFWgIR

    Ia#QRROJa#NLMIH#[QHQFKOH#Q#HINHIRIFKQWXL#MQ#MI^LHJQWXL#MI#JIJbHQFQ#GLFRKQFKI#Ia

    IJ#NQHKOGZUQHa#RI#LbKIH#MI^LHJQWXL#MI#JIJbHQFQ#FZUQ#QRRLGOQMQ#Q#NHLbUIJQR#MI

    ^UIfXL#OFIfKIFROLFQU

    )R#NHLGIMOJIFKLR#QMLKQMLR#NQHQ#JOFLHQH#LR#I^IOKLR#MIRRQR#OFGLJNQKObOUOMQMIR#RXL

    MIRGHOKLR#Q#RI[ZOHi

    _Oc LR#NHLbUIJQR#MIGLHHIFKIR#MLR#JL`OJIFKLR#MI#GLHNL#HV[OML#RXL#RZQ`OYQMLR#GLJ#Q

    QKZQUOYQWXL# ML# HI^IHIFGOQUa# ORKL# oa# QMLKQFML@RI# ZJQ# ^LHJZUQWXL# GLJ# referencial

    Lagrangiano atualizado _.8/c$#/RROJa#FQ#QFmUORI#OFGHIJIFKQU#OJNUIJIFKQMQa#QL

    ^OFQU#MI# GQMQ#NQRRL#MI# GQH[Qa# L# HI^IHIFGOQU# o# KHQFR^IHOML#NQHQ# Q#FL`Q#NLROWXL#LZ

    GLF^O[ZHQWXL#MI#InZOUVbHOLa#HIGoJ@GQUGZUQMQ$

    _OOc FQ#+IWXL#_:$=$3c#o#QNHIRIFKQML#LZKHL#NHLGIMOJIFKL#ZRQML#FIRRI#KHQbQUhL#nZI#`ORQ

    QJIFOYQH#QR#OFGLJNQKObOUOMQMIR#MIGLHHIFKIR#MLR#MIRULGQJIFKLR#MI#GLHNL#HV[OMLi#L

    GmUGZUL#MQR#^LHWQR#OFKIHFQR#UI`QFML#IJ#GLFROMIHQWXL#Q#JZMQFWQ#MI#[ILJIKHOQ#ML

    IUIJIFKL

    _OOOc Q# KoGFOGQ# QMLKQMQ# NQHQ# GLFKLHFQH# Q# OJNLRRObOUOMQMI# MI# HINHIRIFKQWXL# MI

    MI^LHJQWXL#MI#JIJbHQFQ#ZFO^LHJIa#LZ#FZUQ# #GQRL#LR#MIRULGQJIFKLR#FLMQOR#ML

    IUIJIFKL# RIpQJ# GLJNQKV`IOR# GLJ# IRKI# KONL# MI# MI^LHJQWXL# a# RI[ZI# Q# RZ[IRKXL

    ^IOKQ#IJ#(HOR^OIUM#_'??'c#I#/U`IR#_'??:bc$#-RKQ#KoGFOGQ#GLFRORKI#IJ#uniformizar as

    deformaçõesa#LZ#RIpQa#GLFROMIHQH#NQHQ#QR#InZQWgIR#_:$:c#I#_:$Bc#ZJ#`QULH#JoMOL#MQ

    NQHGIUQ#_M∆`sMfc3$#/RROJ#_:$Bc#KLJQ#Q#^LHJQi

    ∆+

    ∆+∆∆−

    ∆=η∆ ∫

    8

    A

    33

    3

    33

    3

    33

    ff MfMf`M#

    8'

    Mf`M}

    Mf`M

    MfZM}3

    MfZM

    3' ################_:$\c

  • ::

    /# ^LHJZUQWXL# RZ[IHOMQ# NLH# 6LHjQJQFO# IK# QU$# _'??Ec# bQRIOQ@RI# FZJQ# ^LHJQ

    ROJNUO^OGQMQ# ML# KIFRLH# MI# 2HIIF@8Q[HQF[Ia# nZI# o# LbKOML# MIRNHIYQFML@RI# Q# NQHGIUQ3sMfcZ_M # Q# uniformização das deformações$# /RROJa# L# KIFRLH# MI# MI^LHJQWgIR# nZI

    GLFKoJ#LR#KIHJLR#nZQMHmKOGLR#QRRZJI#Q#^LHJQ#ROJNUO^OGQMQi

    3

    ff Mf`M

    3'

    ∆=η∆ ###############################################################################################_:$Ec

    SQHQ#ZJ#referencial Lagrangeano atualizado# _.8/ca# QRRZJI@RI#nZI#Q# RLUZWXL# o

    GLFhIGOMQ# FQ# GLF^O[ZHQWXL# MI# InZOUVbHOL# K# # GLF^O[ZHQWXL# MI# HI^IHrFGOQ# a# I# nZI# RI

    MIRIpQ# GQUGZUQH# Q# RLUZWXL# NQHQ# Q# GLF^O[ZHQWXL# Kz∆K$# C# OFMORNIFRm`IUa# NLHKQFKLa# nZI# RI

    MI^OFQ#NQHQ#L#IUIJIFKL#^OFOKL#GLFROMIHQML#L# IRKQML#MI# KIFRgIRa#LZ#MI#MI^LHJQWgIRa#FQ

    GLF^O[ZHQWXL#K$#+I[ZFML#/U`IR#_'??:bca#NLMI@RI#IRGHI`IH#NQHQ#Q#MI^LHJQWXLi

    -"D}

    -/SK −=ε ##################################################################################################_:$Pc

    LFMI#-/# I#-"# RXLa# HIRNIGKO`QJIFKIa# Q# HO[OMIY# MI#JIJbHQFQ# I# Q# HO[OMIY# MI# ^UIfXL# ML

    IUIJIFKL#GLFROMIHQML$#/RRZJOFML#ZJQ#`QHOQWXL#UOFIQH#NQHQ#D#QL#ULF[L#MQ#bQHHQa#GLJL

    OFMOGQML#FQ#

  • :=

    +ZbRKOKZOFMLa#IFKXLa#_:$?c#IJ#_:$Pca#GhI[Q@RI#Qi

    ( )

    +−+=ε f

    8DDD

    -"}

    -/S 3'

    'K ############################################################_:$'Ac

    LFMI#RI#HIRNIOKQ#Q#GLF`IFWXL#MI#ROFQU#MQMQ#FQ#

  • :B

    +I[ZFML#6LHjQJQFO#IK#QU$#_'??Ec#NLMI@RI#MIRNHIYQH#LR#I^IOKLR#ML#JLJIFKL#^UIKLHa

    FL# IRKQML# MI# MI^LHJQWgIR# MQ# GLF^O[ZHQWXL# MI# HI^IHrFGOQa# K$# /RROJa# IRGHI`I@RI# NQHQ# Q

    MI^LHJQWXL#QfOQUi

    -/SK =ε ###########################################################################################################_:$''c

    :+:,-,a# o# MI^OFOMQa# NQHQ# L# referencial

    Lagrangiano atualizado#_.8/ca#GLJLi

    ∫ ∫ε∆+∆=∆

    !LUM!LU#cM#_#>

    K

    K###############################################################################_:$'3c

    /RRZJOFML#L#GLJNLHKQJIFKL#UOFIQH#IUmRKOGLa# ε∆=σ∆ - a#Q#-nZQWXL#_:$'3c#^OGQi

    M/Mf#3-####-##>

    !LU

    3K∫∫

    ε∆+ε∆ε=∆ ###################################################################_:$':c

    )#OFGHIJIFKL#MQ#IFIH[OQ#NLKIFGOQU#MQR#^LHWQR#IfKIHFQR#∆!a#o#MI^OFOML#GLJLi

    ∆∆+∆=∆=∆ ∫ ∫∫R R

    OOOOK

    ROO MR#Z#

  • :\

    )#^ZFGOLFQU#MI#IFIH[OQ#FQ#GLF^O[ZHQWXL#Kz∆K#NLMI#RIH#MI^OFOML#GLJLi

    !##!#>##>###!##>#### KKKKKKKK ∆++∆+=+=Π ∆+∆+∆+ ################################################_:$'Bc

    +QbI@RI# ML# NHOFGVNOL# MQ# IFIH[OQ# NLKIFGOQU# KLKQU# IRKQGOLFmHOQ# nZI# Q# GLFMOWXL

    FIGIRRmHOQ#I#RZ^OGOIFKI#NQHQ#L#InZOUVbHOL#ML#RORKIJQ#IRKHZKZHQU#IJ#IRKZML#NLMI#RIH#LbKOMQ

    ^QYIFML@RIi

    A#!c>_#####!c#>_###### _'cKK_'cKK_'c =∆+∆++=Π∆+ ########################################_:$'\c

    (LJLa# NLH# hONkKIRIa# Q# GLF^O[ZHQWXL# K# IRKm# IJ# InZOUVbHOLa# Q# NQHGIUQ# !c#>_# KK_'c + # o

    FZUQ$#SLMI@RIa#NLHKQFKLa#HIIRGHI`IH#_:$'\c#MQ#RI[ZOFKI#^LHJQi

    A#!c>_########### _'c_'cKK_'c =∆+∆=∆Π=Π∆+ #################################################_:$'Ec

    LFMIi

    !##>## ∆+∆=∆Π ################################################################################################_:$'Pc

    /U`IR#_'??:bc#RZ[IHOZ#Q#RI[ZOFKI#^LHJQ#MI#RI#LH[QFOYQH#L#^ZFGOLFQU#MI#IFIH[OQi

    ∆∆+∆++++=∆Π ∫ ∫τR R

    OOOOK

    3'8A MR#Z#>>#># ######################_:$'?c

    LFMIi

    M!LUI#-3'> K!LU

    ffffK

    AK∫ ∆ε= ##########################################################################_:$3AQc

    M!LU-#> Kff!LU

    ffK

    K

    η∆ε= ∫τ #############################################################################_:$3Abc

  • :E

    M!LUI-3'> K

    !LU

    3ff8

    K∫= ##################################################################################_:$3AGc

    ∫ η∆∆=!LU

    Kffff'

    KM!LUI-> #############################################################################_:$3AMc

    M!LU-3'> K3ff!LU

    3K

    η∆= ∫ ##################################################################################_:$3AIc

    /nZOa#L#KIHJL#>A#IRKm#QRRLGOQML#{R#^LHWQR#QGZJZUQMQR#QKZQFKIR#QKo#Q#GLF^O[ZHQWXL

    MI#InZOUVbHOL#K#>τ#GLHHIRNLFMI#{#OF^UZIFGOQ#MQR#MI^LHJQWgIR#OFOGOQOR#I#LHO[OFQHm#Q#JQKHOY

    MI# KIFRgIR# OFOGOQOR# >8# Mm# LHO[IJ# {# NQHGIUQ# UOFIQH# MQ# JQKHOY# MI# HO[OMIY# >'# I# >3HIRZUKQHXL#FQ#NQHGIUQ#FXL@UOFIQHa#GLHHIRNLFMIFML#HIRNIGKO`QJIFKI#QR#JQKHOYIR#MI#HO[OMIY

    MI#NHOJIOHQ#I#RI[ZFMQ#LHMIJ$

    (LJ#L#LbpIKO`L#MI# RI#LbKIH#ZJQ#InZQWXL#FQ# ^LHJQ# OFGHIJIFKQUa# I^IKZLZ@RI#ZJQ

    ROJNUO^OGQWXL# bQRIQMQ# FQ# RI[ZOFKI# IfNHIRRXLa# RIJIUhQFKI# Q# ML# NHOFGVNOL# MLR# KHQbQUhLR

    `OHKZQORi

    ∫∫ ∆=∆εR

    OOK

    `LUffff

    K #MR#Z#>#># ########################################################_:$3:c

    +ZbRKOKZOFML@RI# IJ# _:$3:c# QR# ^ZFWgIR# MI# OFKIHNLUQWXL# nZI# RIHXL# OFKHLMZYOMQR# FQ

    +IWXL#_:$=c#I#QNUOGQFML#_:$'Eca#LbKoJ@RI#Q#InZQWXL#MI#InZOUVbHOL#ML#RORKIJQ$

  • :P

    :+L,-,

  • :?

    LFMI#QAa#Q'a#bAa#b'a$$$#I#b:#RXL#GLFRKQFKIR#Q#RIHIJ#MIKIHJOFQMQR#QKHQ`oR#MQR#GLFMOWgIR#MI

    GLFKLHFL#ML#IUIJIFKLi#IJ#f#q#Aa#∆Z#q#∆Z'a#∆`#q#∆`'# I#∆θ'#q#M∆`'sMf# I# IJ#f#q#8a

    3ZZ ∆=∆ a#∆`#q#∆`3#I#∆θ3#q#M∆`3sMf$#,IRRQR#GLFMOWgIR#GhI[Q@RI#{R#IfNHIRRgIR#NQHQ#∆Z

    I#∆`#IJ#KIHJLR#MLR#`QULHIR#FLMQORi

    ∆ ∆ ∆Z 9 Z 9 Z= +' ' 3 3 ####################################################################################_:$3\c

    ∆ ∆ ∆θ ∆ ∆θ` 9 ` 9 9 ` 9= + + +: ' = ' B 3 \ 3 ###################################################_:$3Ec

    LFMI#9'a#93a$$$#I#9\#RXL#QR#^ZFWgIR#MI#OFKIHNLUQWXLi

    9f8'

    '= − #I#9f83

    = ####################################################################################_:$3PQc

    9 f8

    f8:

    3

    3

    :

    :': 3= − + # 9 f f

    8f8=

    3 :

    33= − +

    9 f8

    f8B

    3

    3

    :

    :: 3= − #I# 9 f

    8f8\

    3 :

    3= − + ###########################################################_:$3Pbc

    DQKHOGOQUJIFKIa#KIJ@RI#nZI#LR#MIRULGQJIFKLR#∆Z#I#∆`a#I#Q#HLKQWXL#∆θ#MI#ZJ#MQML

    NLFKL#ML#IUIJIFKLa#Q#ZJQ#MORKTFGOQ#f#ML#Fk#'a#RXL#MQMQR#NLHi

    M9N ∆=∆ #######################################################################################################_:$3?c

    LFMI# { }∆ ∆ ∆ ∆θN = Z ` 6 # { } 6333''' `Z`Z θ∆∆∆θ∆∆∆=∆M #I#9#KIJ#Q#RI[ZOFKI#^LHJQi

    =

    =

    fa\faBfa=fa:

    \B=:

    3'

    `

    `

    Z

    99A99A

    99A##9#9A

    AA9###A##A9

    *

    *

    *

    9 #################################################_:$:Ac

  • =A

    /# KHQFR^LHJQWXL# MI#∆M# NQHQ# L# RORKIJQ# MI# GLLHMIFQMQR# [ULbQU# %d# _HI^IHIFGOQU

    GLJZJc#o#MQMQ#NLHi

    M%M ∆=∆ 6[U #################################################################################################_:$:'c

    LFMI#%#o#Q#JQKHOY#MI#HLKQWXL#ML#IUIJIFKL$

    :+L+!,-,?IHOPQ,NF,OPRPNFQ

    ,I#QGLHML#GLJ#/U`IR#_'??:bc#I#+OU`IOHQ#_'??Bca#GLFRI[ZI@RI#IfNHOJOH#L#OFMOGQMLH

    `QHOQGOLFQU#_:$3:c#IJ#^ZFWXL#MLR#MIRULGQJIFKLR#I#^LHWQR#FLMQOR#MQ#RI[ZOFKI#^LHJQi

    MMMGMGGGM 4!8 ∆

    ∆∆+∆++∆=∆Π τ ca_3=

    'c_\'

    3'

    3'6

    ######### OP

    j∆∂∆∂

    ∂= ττ ##################################################################################################_:$::bc

    j>

    Z Z ZZO p

    O p jj'

    :'

    _ a c =∂

    ∂∆ ∂∆ ∂∆∆ ##################################################################################_:$::Gc

    j>

    Z Z Z ZZ ZO p

    O p j Uj U3

    =3

    _ a c =∂

    ∂∆ ∂∆ ∂∆ ∂∆∆ ∆ ####################################################################_:$::Mc

  • ='

    )bRIH`Q@RI# nZI# Q# MI^OFOWXL# MQR# GLJNLFIFKIR# MQR# JQKHOYIR# NLH# MO^IHIFGOQWXL

    GLFMZY# Q# ZJ# NHLGIMOJIFKL# [IHQU# nZI# [QHQFKI# Q# ROJIKHOQ# Ia# QOFMQa# QR# NHLNHOIMQMIR# MI

    MORKHObZKO`OMQMI# I# GLJZKQKO`OMQMI$#,IRKQGQ@RI# QOFMQ# NQHQ# L# IUIJIFKL# GLFROMIHQMLa# nZI

    IRRI# NHLGIMOJIFKL# o#JQOR# QMInZQML# ML# nZI# Q# ^LHJQ# KHQMOGOLFQU# MI# IUIJIFKLR# ^OFOKLRa

    LFMI#QR#JQKHOYIR#MI#HO[OMIY#RXL#MI^OFOMQR#IJ#KIHJLR#MI#JQKHOYIR#MI#OFKIHNLUQWXLa#RIJa

    FL#IFKQFKLa#I^IKZQH#Q#OFKI[HQWXL#FL#`LUZJI#ML#IUIJIFKL$

    -J#_:$:3ca#L#`IKLH#K

  • =3

    )#`IKLH#R# o# MI^OFOML# GLJL# RIFML# O[ZQU# QL# `IKLH# MI# ^LHWQR# MIRInZOUObHQMQRa# GLJ

    ROFQU#FI[QKO`L$

    /R# -nZQWgIR# _:$:=c# LZ# _:$:Bca# HINHIRIFKQJ# ZJ# RORKIJQ# MI# InZQWgIR# QU[obHOGQR

    FXL@UOFIQHIR$# (LJL# pm# JIFGOLFQMLa# Q# RLUZWXL# MIRRI# RORKIJQ# o# LbKOMQ# FIRKI# KHQbQUhL

    QKHQ`oR#MQ#KoGFOGQ#OKIHQKO`Q#MI#Newton-Raphson$#SQHQ#IRKI#IRnZIJQ#MI#RLUZWXLa#MI^OFI@

    RI#Q#JQKHOY#MI#HO[OMIY#OFGHIJIFKQU#G$

    /U`IR# _'??:bc# MI^OFI# Q# JQKHOY# MI# HO[OMIY# MIHO`QFML# Q# IfNHIRRXL# MQR# ^LHWQR

    OFKIHFQRa#-nZQWXL#_:$:\ca#IJ#HIUQWXL#Q#∆M$#,IRRQ#^LHJQa#IRGHI`I#Q#JQKHOY#MI#HO[OMIY#G

    RLb#Q#^LHJQi

    ∆∆+∆++= ca_

    3'c_ MMGMGGGG 4!>8 ####################################################_:$:Ec

    6LHjQJQFO# IK# QU$# _'??Ec# HIIRGHI`I# Q# -nZQWXL# _:$:\c# FQ# ^LHJQi# P8 ################################################_:$:Pc

    /# NQHGIUQ# c##_ >8 GG + a# OFMINIFMIFKI# MLR# MIRULGQJIFKLR# FLMQORa# o# Q# JQKHOY# MI

    HO[OMIY#KQF[IFKI#QL#NLFKL#MI#InZOUVbHOL#OFOGOQU$# 8G #o#Q#JQKHOY#MI#HO[OMIY#UOFIQH# >G o#Q

    JQKHOY# MI# KIFRgIR# OFOGOQOR# _LZ#JQKHOY# MI# HO[OMIY# [ILJoKHOGQc# nZI# o# ^ZFWXL# MQR# ^LHWQR

    FLMQOR#OFOGOQOR$#/#OFGUZRXL#MQ#NQHGIUQ#FXL@UOFIQH#GLJ#QR#JQKHOYIR#MI#NHOJIOHQ#I#RI[ZFMQ

    LHMIJa 3' ##I# GG a#GLHHO[I#Q#HO[OMIY#MQMQ#NIUQ#JQKHOY#MI#HO[OMIY#KQF[IFKI$

    /R#GLJNLFIFKIR#MIRRQR#JQKHOYIR#RIHXL#QNHIRIFKQMQR#FL#/NrFMOGI#/$

  • =:

    :+L+4,-,7FHSO,NF,TSOUIV,PWHFOWIV

    /L#RI#ZKOUOYQH#MOHIKQJIFKI#Q#-nZQWXL#_:$:\c#NQHQ#ZJ#JL`OJIFKL#MI#GLHNL#HV[OMLa

    `IHO^OGQ@RI# Q# LGLHHrFGOQ# MI# ^LHWQR# OFKIHFQR# FXL# FZUQR# HI^IHIFKIR# {# HLKQWXL# ML# GLHNL

    HV[OMLa#L#nZI#UL[OGQJIFKI#FXL#MI`IHOQ#LGLHHIH$

    ,LOR#NHLGIMOJIFKLR# RXL# QMLKQMLR# QnZO# GLJ#L# OFKZOKL#MI#JOFLHQH# IRRI#NHLbUIJQ$

    +XL#IUIRi

    _Oc ZKOUOYQWXL# MI# ZJ# referencial Lagrangiano atualizado# _.8/ca# NLOR# QRROJ# Q

    MI^LHJQMQ# Q# RIH# GQUGZUQMQ# FXL# RI# MORKQFGOQ# MQnZIUQ# KLJQMQ# GLJL# HI^IHrFGOQ# I# QR

    HLKQWgIR# MI# GLHNL# HV[OML# RXL# MO`OMOMQR# IJ# NQHKIR# JIFLHIRa# RIFML# NLHKQFKL# JIUhLH

    QNHLfOJQMQR#NIUQR#^ZFWgIR#MI#OFKIHNLUQWXL$

    _OOc GmUGZUL#MQR# ^LHWQR# OFKIHFQR#MQ# IRKHZKZHQ# UI`QFML@RI#IJ#GLFROMIHQWXL#Q#[ILJIKHOQ

    MI^LHJQMQ#MQ#bQHHQ$

    SQHQ#QR#^LHJZUQWgIR#KHQKQMQR#FIRKI#GQNVKZULa#^LHQJ#OJNUIJIFKQMQR#MZQR#JQFIOHQR

    MO^IHIFKIR#MI#RI#LbKIH#QR#^LHWQR#OFKIHFQR$#/#NHOJIOHQ#JQFIOHQ#Q#RIH#QFQUORQMQ#FIRKQ#RIWXLa

    NHLNLRKQ#NLH#/U`IR#_'??:bc#I#OJNUIJIFKQMQ#GLJ#RZGIRRL#NLH#+OU`IOHQ#_'??Bca#GLFRORKI

    IJ# GQUGZUQH# QR# ^LHWQR# OFKIHFQRa# IJ# GQMQ# OKIHQWXLa# QKHQ`oR# MLR# MIRULGQJIFKLR# nZI

    HIQUJIFKI# NHL`LGQJ# MI^LHJQWgIRa# LbKOMLR# IJ# HIUQWXL# {# GLF^O[ZHQWXL# OFOGOQU

    OFMI^LHJQMQ#_deslocamentos naturais totaisc$#/#RI[ZFMQ#JQFIOHQa#RZ[IHOMQ#NLH#dQF[#I

    eZL#_'??=ca#GLFRORKI#IJ#RI#LbKIH#QR#^LHWQR#OFKIHFQR#QKHQ`oR#MLR#deslocamentos naturais

    incrementaisa# ORKL# oa# QKHQ`oR# MLR# MIRULGQJIFKLR# nZI# HIQUJIFKI# GQZRQJ# MI^LHJQWgIRa

    JIMOMLR#IJ#HIUQWXL#{#xUKOJQ#GLF^O[ZHQWXL#MI#InZOUVbHOL#LbKOMQ#FL#NHLGIRRL#OFGHIJIFKQU

    MI#RLUZWXL$

  • ==

    :+L+4+!,-,'FVJSXIYFWHSV,WIHMOIPV,HSHIPV,B1JZFV[,!CC:DE

    SQHQ#Q#LbKIFWXL#MQ#GLF^O[ZHQWXL#MI#InZOUVbHOL#Kz∆Ka#o#OJNLHKQFKI#MORKOF[ZOHa#NQHQ#L

    IUIJIFKL# GLFROMIHQMLa# LR# MIRULGQJIFKLR# I# HLKQWgIR# MI# GLHNL# HV[OML# MQnZIUIR# nZI

    QGQHHIKQJ# HIQUJIFKI# MI^LHJQWXL$# *Q#

  • =B

    |F

    |F

    |F

    |F8

    |KK ca_\'c_

    3' MMMGMGG< 4!P

    ++=∆+ ###############################################_:$='c

    GLJ#Q#IfGUZRXL#MQ#JQKHOY# G a#NLOR#RI#HI^IHI#QL#IRKQML#OFOGOQU#OFMI^LHJQML#K#q#A$

    δ

    %28

    d28

    f

    } φ1 φ2

    Qc#,IRULGQJIFKLR#FQKZHQOR#KLKQOR$

    A

    A

    ################

    S

    D'

    S

    bc#-R^LHWLR#HIUQGOLFQMLR#GLJ#δa#φ' I#φ3$#################

    D3

    δ

    φ1φ2

    }

    f

    θ1

    θ2

    '

    38

    3'

    Z'

    Z38

    A

    A

    A

    A

    `'

    `3

    ψ`

    8#z#ZA

    Gc#2ILJIKHOQ#MI^LHJQMQ

  • =\

    OFKIHFQR#RXL#^ZFWgIR#FXL@UOFIQHIR#MI# |FM a#IRKI#RORKIJQ#InZO`QUIFKI#o#LbKOML#OF`LGQFML#L

    NHOFGVNOL#MLR#KHQbQUhLR#`OHKZQORa#LZ#RIpQi

    |F

    6#|KK6KK MM M

  • =E

    +ZbRKOKZOFML@RI# _:$==c# IJ# _:$=3ca# L# NHOFGVNOL# MLR# KHQbQUhLR# `OHKZQOR# QRRZJI# Q

    RI[ZOFKI#^LHJQi

    M1

  • =P

    WWW4W!8P MMMGMGGG< ∆

    ∆∆+∆++=∆ ca_

    \'c_

    3'

    K #############################_:$BAc

    )bRIH`I# nZI# FIRKI# GLFKIfKL# Q# OFGUZRXL# MI#Gττττ# o# FIGIRRmHOQ# NLHnZI# RI# HI^IHI# QL# IRKQML

    MI^LHJQML# MQ# GLF^O[ZHQWXL# MI# InZOUVbHOL# K$#∆∆∆∆MW# o# L# `IKLH# MI# deslocamentos naturais

    incrementais#_

  • =?

    δ

    %28

    d28

    f

    } φ1 φ2

    Qc#,IRULGQJIFKLR#FQKZHQOR#OFGHIJIFKQOR$

    K

    K

    #############################

    ∆S

    ∆D'

    ∆S

    bc#-R^LHWLR#HIUQGOLFQMLR#GLJ#δa#φ'I#φ3#

    ∆D3

    δ

    φ1φ2

    }

    f

    θ1

    θ2

    '

    38

    3'

    ∆Z'

    ∆Z38

    K

    K

    K

    K

    ∆`'∆`3

    ψ`

    8#z#ZK

    8Kz∆K

    Gc#2ILJIKHOQ#MI^LHJQMQ

    KOUOYQFML# Q# HIUQWXL# _:$=?c# pZFKQJIFKI# GLJ# _:$BAc# GhI[Q@RI# QL# `IKLH# MI# ^LHWQR

    FLMQOR# QbRLH`OMQR# NIUQ# IRKHZKZHQ# FQ# GLF^O[ZHQWXL# MI# InZOUVbHOL# Kz∆Ka# MIKIHJOFQML# FL

    RORKIJQ#ULGQU#NQHQ#L#IUIJIFKL#[IFoHOGL#I$

    )#`IKLH#MI#^LHWQR#OFKIHFQR#MI`I#RIH#KHQFR^LHJQML#NQHQ#L#RORKIJQ#[ULbQU#QKHQ`oR#MQ

    JQKHOY#%Ia#nZI#o#Q#JQKHOY#MI#HLKQWXL#IFKHI#L#RORKIJQ#[ULbQU#MI#HI^IHrFGOQR#I#L#RORKIJQ

    ULGQU#QKZQUOYQML#FQ#xUKOJQ#OKIHQWXL#NHLGIRRQMQ$#)#`IKLH#MI#^LHWQR#OFKIHFQR#ML#RORKIJQ#oa

    IFKXLa# LbKOML# FQ# ^LHJQ# [ULbQU# RLJQFML@RI# LR# IR^LHWLR# OFKIHFLR# QbRLH`OMLR# NLH# GQMQ

    IUIJIFKLa#MI`OMQJIFKI#KHQFR^LHJQMLR#NQHQ#L#RORKIJQ#[ULbQU#MI#HI^IHrFGOQa#LZ#RIpQi

  • BA

    ∑=

    ∆+∆+ =J

    'I

    KK6[U#

    KK # PIP

  • L

  • B3

    L+4,-,%081)20/,'0

  • B:

    /GIOKQFML@RI# Q# hONkKIRI# MQ# KILHOQ# MI# `O[QR# MI# 4IHFLZUUO# MI# nZI# QR# RIWgIR

    KHQFR`IHRQOR# OFOGOQUJIFKI# NUQFQR# NIHJQFIGIJ# NUQFQR# QNkR# Q# MI^LHJQWXLa# IRGHI`I@RIa

    GLF^LHJI#`ORKL#FQ#

  • B=

    SQHQ#ZJ#referencial Lagrangiano atualizado#_.8/c#o#OFMORNIFRm`IU#nZI#RI#MI^OFQ

    NQHQ#L#IUIJIFKL#^OFOKL#GLFROMIHQML#L#IRKQML#MI# KIFRgIRa#LZ#MI#MI^LHJQWgIRa#FQ#xUKOJQ

    GLF^O[ZHQWXL# MI# InZOUVbHOL# LbKOMQ# FL# NHLGIRRL# MI# RLUZWXL# OFGHIJIFKQUa# LZ# RIpQa# FQ

    GLF^O[ZHQWXL# K$# )R# IR^LHWLR# OFOGOQOR# HIRZUKQFKIR# _QfOQOR# KSa# GORQUhQFKIR# K~a# I# JLJIFKL

    ^UIKLH#KDc#NLMIJ#RIH#MI^OFOMLR#NLHi

    ∫ τ=/

    ffKK M/###S ##################################################################################################_=$''c

    ∫ τ=/

    f}KK M/###~ #################################################################################################_=$'3c

    ∫ τ=/

    ffKK M/}####D #############################################################################################_=$':c

    /#NQHKOH#MQ#

  • BB

    :

    :33F

    f} Mf`M

    MfZM#

    =h#@#}

    3-##+# ∆∆

    = ########################################################################_=$'\bc

    RIFML#h#O[ZQU#Q#QUKZHQ#MQ#RIWXL#KHQFR`IHRQU#ML#IUIJIFKL#MI#`O[Q$

    L+:,-,a# MI^OFOMLa# NQHQ# L# referencial

    Lagrangiano atualizado#_.8/c#GLJLi

    ∫ ∫+

    τ∆=∆!LU

    OpOp M!LU#cM#_#>OpOp

    K

    OpK

    ########################################################################_=$'Pc

    (LFROMIHQFML@RI#IFKXL#QR#MI^LHJQWgIR#QfOQOR#I#GORQUhQFKIRa#IRGHI`I@RIi

    M/Mf####3#>!LU

    f}K

    ffK

    f}ff∫∫

    ε∆τ+ε∆τ=∆

    M/Mf##3###3-#

    !LUf}

    K3f}ff∫∫

    ε∆τ+ε∆+ ∆ ###############################################################_=$'?c

    )#OFGHIJIFKL#MQ#IFIH[OQ#NLKIFGOQU#MQR#^LHWQR#IfKIHFQR#∆!#o#MI^OFOML#GLJLi

    ∆∆+∆=∆=∆ ∫ ∫∫R R

    OOOOK

    ROO MR#Z#

  • B\

    L+:+!,-, #########################################################_=$3:Qc

    ∫∫

    ∆∆+

    ∆+

    ∆+

    ∆=τ

    8

    A3

    3K

    8

    A

    3

    3

    333K #Mf

    Mf`M

    MfZMD

    3'####Mf

    Mf`M

    /"#

    Mf`M

    MfZM#S

    3'>

    ∆∆−8

    A

    K MfMf`M

    MfZM~

    3'# ##############################################################################_=$3:bc

    M!LUI-3'> K

    !LU

    3ff8

    K∫= ##################################################################################_=$3:Gc

  • BE

    (LJ#L#LbpIKO`L#MI#LbKIH#InZQWgIR#MI#InZOUVbHOL#FQ#^LHJQ#OFGHIJIFKQUa#I^IKZLZ@RI

    ZJQ#ROJNUO^OGQWXL#RIJIUhQFKI#{#JLRKHQMQ#FL#GQNVKZUL#QFKIHOLH#NIUQR#-nZQWgIR#_:$3'c#I

    _:$33ci

    ( ) ∫∫ ∆=∆τ+∆τR

    OOK

    `LUf}f}

    Kffff

    K #MR#Z## ##########################################################################_=$3\c

    L+:+4,-,τ#q#>τ@Ra#LFMIi

    ∫∫∆∆−

    ∆=−τ

    8

    A

    K8

    A

    3K

    R MfMf`M

    MfZM~

    3'###Mf

    Mf`MS#

    3'> #############################################_=$3Ec

  • BP

    L+:+:,-, f} ####################################################_=$3?Qc

    M!LU#+#3##3->

    !LUf}

    F3ff3 f}∫

    η∆+η∆= ######################################################_=$3?bc

    +ZbRKOKZOFML#FIRRQR#InZQWgIR#QR#HIUQWgIR#_=$Bca#_=$\c#I#_=$'\ca#I#GLFROMIHQFML@RI

    QU[ZJQR#ROJNUO^OGQWgIRa#NLMI@RI#IRGHI`IHi

    Mf#MfZM

    Mf`M

    Mf`M"-

    Mf`M

    MfZM

    3:-"

    Mf`M

    MfZM

    3-/>

    8

    A:

    :3

    3

    333

    ' ∫

    ∆∆∆+

    ∆∆+

    ∆+∆= #########_=$:AQc

    ∆∆+

    ∆+∆+

    ∆+∆=8

    A

    3

    3

    3

    3

    333333

    3Mf`M

    MfZM

    3-"

    Mf`M

    Mf`M

    MfZM

    P-"

    Mf`M

    MfZM

    P-/>

    ########################################################################## Mf#Mf`M

    Mf`M

    MfZM-"########### :

    :3

    ∆∆∆+ ###_=$:Abc

  • B?

    L+L,-,Z Z8 O p

    8

    O p_ a c =

    ∂∂∆ ∂∆

    3#################################################################################################_=$:3Qc

    pO

    3

    cpaO_ ZZ>

    j∆∂∆∂

    ∂= ττ ##################################################################################################_=$:3bc

  • \A

    j>

    Z Z ZZO p

    O p jj'

    :'

    _ a c =∂

    ∂∆ ∂∆ ∂∆∆ ##################################################################################_=$:3Gc

    j>

    Z Z Z ZZ ZO p

    O p j Uj U3

    =3

    _ a c =∂

    ∂∆ ∂∆ ∂∆ ∂∆∆ ∆ ####################################################################_=$:3Mc

    RIFML# nZI# G!# I# G4# Rk# RXL# LbKOMQR# I# GLFROMIHQMQR# NQHQ# Q# ^LHJZUQWXL# GLJ# uordem

    elevadav$

    -J#_=$:'ca#L#`IKLH# K

  • \'

    PO

  • \3

    L+L+4+!,-,'FVJSXIYFWHSV,WIHMOIPV,PWXOFYFWHIPV

    SHIKIFMI@RI# FIRKQ# QbLHMQ[IJ# LbKIH# L# `IKLH# P<KK ∆+ # MI# JQFIOHQ# OFGHIJIFKQUa# LZ

    RIpQa#Q#GQMQ#NQRRL#MI#GQH[Q#L#QGHoRGOJL#FQR#^LHWQR#OFKIHFQR#MI`I#RIH#GQUGZUQML$#SQHQ#ORRL

    GLFROMIHQ@RI#`mUOMQ#Q#HIUQWXLi

    PPP

  • \:

    '3 ZZ##Z ∆−∆= ##############################################################################################_=$=3Qc

    '3 ``##` ∆−∆= ###############################################################################################_=$=3bc

    =Ψ −8`KQF K

    ' ##############################################################################################_=$=3Gc

    LFMI#Ψ#o#Q#HLKQWXL#MI#GLHNL#HV[OML#nZI#L#IUIJIFKL#RL^HI$#/#NQHKOH#MIRRIR#`QULHIRa#GhI[Q@

    RIa# LbRIH`QFML# Q# JIRJQ# ^O[ZHQa# {R# IfNHIRRgIR# MLR# MIRULGQJIFKLR# nZI# NHL`LGQJ

    MI^LHJQWXLa#LZ#RIpQi

    8##8# KKK −=δ ∆+ ###############################################################################################_=$=:Qc

    ψ−θ∆=φ '' ##################################################################################################_=$=:bc

    ψ−θ∆=φ 33 #################################################################################################_=$=:Gc

    >KOUOYQFML#Q#HIUQWXL#_=$:?c#pZFKQJIFKI#GLJ#_=$:Pc#GhI[Q@RIa#NLHKQFKLa#QL#`IKLH#MI

    ^LHWQR#FLMQOR#QbRLH`OMQR#NIUQ#IRKHZKZHQ#FQ#GLF^O[ZHQWXL#MI#InZOUVbHOL#Kz∆Ka#MIKIHJOFQML

    FL#RORKIJQ#ULGQU#NQHQ#L#IUIJIFKL#[IFoHOGL$

    )#`IKLH#MI#^LHWQR#OFKIHFQR#MI`I#RIH#KHQFR^LHJQML#NQHQ#L#RORKIJQ#[ULbQU#QKHQ`oR#MQ

    JQKHOY#%Ia#nZI#o#Q#JQKHOY#MI#HLKQWXL#IFKHI#L#RORKIJQ#[ULbQU#MI#HI^IHrFGOQR#I#L#RORKIJQ

    ULGQU#QKZQUOYQML#FQ#xUKOJQ#OKIHQWXL#NHLGIRRQMQ$#)#`IKLH#MI#^LHWQR#OFKIHFQR#ML#RORKIJQ#oa

    IFKXLa# LbKOML# FQ# ^LHJQ# [ULbQU# RLJQFML@RI# LR# IR^LHWLR# OFKIHFLR# QbRLH`OMLR# NLH# GQMQ

    IUIJIFKLa#MI`OMQJIFKI#KHQFR^LHJQMLR#NQHQ#L#RORKIJQ#[ULbQU#MI#HI^IHrFGOQa#LZ#RIpQi

    ∑=

    ∆+∆+ =J

    'I

    KK6[U#

    KK # PIP

  • \=