155
UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA E BIOLOGIA MOLECULAR CARACTERIZAÇÃO MOLECULAR E FUNCIONAL DE GENES DAS FAMÍLIAS MIP (PROTEÍNA INTRÍNSECA PRINCIPAL) E GolS (GALACTINOL SINTASE) ENVOLVIDOS NA RESPOSTA A ESTRESSES BIÓTICOS E ABIÓTICOS EM CITROS CRISTINA DE PAULA SANTOS MARTINS ILHÉUS BAHIA BRASIL Março de 2016

UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

Embed Size (px)

Citation preview

Page 1: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

UNIVERSIDADE ESTADUAL DE SANTA CRUZ

PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA E

BIOLOGIA MOLECULAR

CARACTERIZAÇÃO MOLECULAR E FUNCIONAL DE GENES

DAS FAMÍLIAS MIP (PROTEÍNA INTRÍNSECA PRINCIPAL) E

GolS (GALACTINOL SINTASE) ENVOLVIDOS NA RESPOSTA

A ESTRESSES BIÓTICOS E ABIÓTICOS EM CITROS

CRISTINA DE PAULA SANTOS MARTINS

ILHÉUS – BAHIA – BRASIL

Março de 2016

Page 2: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

CRISTINA DE PAULA SANTOS MARTINS

CARACTERIZAÇÃO MOLECULAR E FUNCIONAL DE GENES

DAS FAMÍLIAS MIP (PROTEÍNA INTRÍNSECA PRINCIPAL) E

GolS (GALACTINOL SINTASE) ENVOLVIDOS NA RESPOSTA

A ESTRESSES BIÓTICOS E ABIÓTICOS EM CITROS

Tese apresentada à

Universidade Estadual de Santa Cruz,

como parte das exigências para

obtenção do título de Doutor em

Genética e Biologia Molecular.

Orientador: Prof. Dr. Marcio Gilberto

Cardoso Costa

ILHÉUS – BAHIA – BRASIL

Março de 2016

Page 3: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

M379 Martins, Cristina de Paula Santos. Caracterização molecular e funcional de genes das famílias MIP (Proteína Intrínseca Principal) e GoIS (Galactinol Sintase) envolvidos na resposta a estres- ses bióticos e abióticos em citros / Cristina de Paula Santos Martins. – Ilhéus, BA: UESC, 2016. 142 f. : il. Orientador: Marcio Gilberto Cardoso Costa. Tese (Doutorado) – Universidade Estadual de Santa Cruz. Programa de Pós-Graduação em Genética e Biologia Molecular. Inclui referências.

1. Frutas cítricas – Cultivo. 2. Biotecnologia. 3.

Estresse hídrico. 4. Frutas – Melhoramento genético.

I. Título.

CDD 634.3

Page 4: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

CRISTINA DE PAULA SANTOS MARTINS

CARACTERIZAÇÃO MOLECULAR E FUNCIONAL DE GENES DAS FAMÍLIAS

MIP (Proteína Intrínseca Principal) E GolS (Galactinol Sintase) ENVOLVIDOS

NA RESPOSTA A ESTRESSES BIÓTICOS E ABIÓTICOS EM CITROS

Tese apresentada à

Universidade Estadual de Santa Cruz,

como parte das exigências para

obtenção do título de Doutor em

Genética e Biologia Molecular.

APROVADA em 04 de março de 2016

_____ _____

Prof. Dr. Luciano Freschi

USP

Prof. Dr. Raúl René Meléndez Valle

CEPLAC

_____

Prof. Dr. Fabienne Florence Luciene Micheli

UESC

Prof. Dr. Fátima Cerqueira Alvim

UESC

__________

Prof. Dr. Alex-Alan Furtado de Almeida

UESC

Page 5: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

“Esperar não significa inércia, muito menos desinteresse;

Renunciar não quer dizer que não ame; Abrir mão não

quer dizer que não queira; O tempo ensina, mas não cura.”

Martha Medeiros

Aos meus queridos pais, Maria Lúcia e Valmir.

DEDICO

Page 6: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

AGRADECIMENTOS

A Deus, por me proteger e iluminar o meu caminho em todos os dias da minha

vida.

A toda a minha família, em particular aos meus pais (Maria Lúcia e Valmir), por

colocarem sempre os meus interesses em primeiro lugar e por todos os

sacrifícios que fizeram e fazem por mim, o meu profundo agradecimento. Amo

vocês!

Ao meu orientador, Prof. Dr. Marcio Gilberto Cardoso Costa pelo apoio,

paciência, incentivo e disponibilidade, tornando possível a realização deste

trabalho.

Aos funcionários e professores do PPGGBM, pelo apoio.

A Coordenação de Aperfeiçoamento de Pessoal de Nível superior (CAPES),

pela concessão da bolsa de estudo.

Aos colegas da University of Florida pela recepção e acolhimento durante o

período da bolsa sanduíche, em especial ao Dr. Frederick G. Gmitter Jr. pela

orientação.

Pela amizade, risadas e contribuições da família CBG (Monique, Luciana,

Diana, Jamilly, Lívia, Laís, Andressa, Jam, Juliano, Jacque e Carol).

Aos meus preciosos e verdadeiros amigos de Rio Acima e da UFMG, pelo

companheirismo, compreessão e paciência durante todos esses anos de

convívio.

A todos aqueles que por diferentes razões possibilitaram a realização deste

trabalho, muito obrigada!

Page 7: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

ÍNDICE

EXTRATO ............................................................................................................... i ABSTRACT ........................................................................................................... iii

2.1 Objetivo geral ............................................................................................ 5 2.2 Objetivos específicos ................................................................................ 5

3 REVISÃO DE LITERATURA .......................................................................... 6 3.1 Aspectos gerais e econômicos da citricultura ........................................... 6 3.2 Respostas moleculares e fisiológicas à deficiência hídrica em citros ....... 8 3.3 Huanglongbing ........................................................................................ 14 3.4 Major Intrinsic Proteins (MIPs) ................................................................ 10 3.5 Galactinol sintase ................................................................................... 12

4. REFERENCIAS ............................................................................................ 17 CAPÍTULO 1 ................................................................................................ 29

ABSTRACT ...................................................................................................... 30 1 INTRODUCTION ........................................................................................... 31 2 MATERIALS AND METHODS ...................................................................... 33

2.1 Plant materials and stress treatments ..................................................... 33 2.2 Identification and classification of CsMIPs .............................................. 34 2.3 Analysis of CsMIP protein properties and conserved amino acid residues ...................................................................................................................... 35 2.4 Analysis of promoter sequences and chromosomal locations of CsMIPs 36 2.5 Expression analysis of CsMIPs ............................................................... 36 3 Results and Discussion.............................................................................. 37 3.1 MIP encoding genes in the sweet orange genome ................................. 37 3.2 CsMIP protein properties and conserved amino acid residues ............... 41 3.3 Genomic organization of CsMIPs ........................................................... 43 3.4 Expression patterns of CsMIP genes in different tissues ........................ 45 3.5 Expression patterns of CsMIP genes under abiotic and biotic stresses .. 47

4 CONCLUSION .............................................................................................. 51 5 ACKNOWLEDGEMENTS ............................................................................. 52 6 REFERENCES .............................................................................................. 52 7 SUPPORTING INFORMATION .................................................................... 59

CAPÍTULO 2 ................................................................................................ 66 ABSTRACT ...................................................................................................... 67 1. INTRODUCTION .......................................................................................... 67 2. MATERIALS AND METHODS ..................................................................... 69

2.1 Plant materials and stress treatments ..................................................... 70 2.2 RNA extraction and quantitative real-time RT-PCR (qPCR) analysis ..... 70 2.3 CsTIP2;1 cloning and generation of transgenic tobacco ......................... 69 2.4 Analysis of H2O2 accumulation ............................................................... 72 2.5 Leaf anatomy .......................................................................................... 72 2.6 H2O2 sensitivity assay of leaves .............................................................. 72 2.7 Physiological and growth analyses ......................................................... 73 2.8 Statistical analysis .................................................................................. 74

3 RESULTS ...................................................................................................... 74

Page 8: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

3.1 Overexpression of CsTIP2;1 in transgenic tobacco ................................ 74 3.2 CsTIP2;1-overexpressing tobacco plants show enhanced tolerance to dehydration ................................................................................................... 74 3.3 Dehydration tolerance of CsTIP2;1-overexpressing transgenic lines correlates with the inhibition of H2O2 accumulation ....................................... 75 3.4 CsTIP2;1-overexpressing tobacco plants show improved tolerance to water and salt stresses ................................................................................. 76 3.5 CsTIP2;1 overexpression in tobacco improves their growth, photosynthetic capacity and WUE under drought stress .............................. 78 3.6 CsTIP2;1 overexpression promotes mesophyll cell expansion and aquiferous parenchyma differentiation .......................................................... 82 3.7 CsTIP2;1 expression increases the resistance of transgenic tobacco to exogenous H2O2 application ......................................................................... 84

4 DISCUSSION ................................................................................................ 85 5 CONCLUSIONS ............................................................................................ 88 6 ACKNOWLEDGMENTS ............................................................................... 88 7 REFERENCES .............................................................................................. 88 8 SUPPORTING INFORMATION .................................................................... 96

CAPÍTULO 3 ................................................................................................ 98 1 INTRODUCTION ........................................................................................... 99 2 MATERIALS AND METHODS .................................................................... 101

2.1 Identification and sequences analysis .................................................. 101 2.2 Plant materials and stress treatments ................................................... 102 2.3 RNA extraction and expression analysis of CsGolS in citrus ................ 104 2.4 CsGolS6 cloning and generation of transgenic tobacco ....................... 105 2.5 Leaf anatomy ........................................................................................ 106 2.6 Metabolic profile primary ....................................................................... 106 2.7 Statistical analysis ................................................................................ 107

3 RESULTS AND DISCUSSION .................................................................... 107 3.1 Identification and sequence analysis of the CsGolS ............................. 107 3.2 Expression of CsGolS genes in leaf and root under abiotic and biotic stresses conditions ..................................................................................... 109 3.3 CsGolS6-overexpressing transgenic tobacco shows enhanced tolerance to dehydration and salt stresses ................................................................. 112 3.4 Physiologyand growth analysis of CsGolS6-overexpressing transgenic plants under drought stress ........................................................................ 113 3.5 Mesophyll anatomy change in the CsGolS6-overexpressing transgenic plants under drought stress ........................................................................ 116 3.6 Metabolomic changes in CsGolS6-overexpressing transgenic plants .. 118 4 conclusion ................................................................................................ 120

5 REFERENCE .............................................................................................. 120 6 SUPPORTING INFORMATION .................................................................. 124 APÊNDICE .................................................................................................... 128 1 INTRODUÇÃO ............................................................................................ 129 2 OBJETIVO GERAL ..................................................................................... 132

2.1 Objetivos específicos ............................................................................ 132 3 MATERIAL E MÉTODOS ........................................................................... 132

3.1 Material vegetal e estirpe de Agrobacterium ......................................... 132 3.2 Análise de expressão gênica ................................................................ 132 3.3 Clonagem Gateway .............................................................................. 133

Page 9: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

3.4 Ensaios de coinfiltração de folhas de Nicotiana benthamiana e análise de fluorescência ............................................................................................... 134

4 RESULTADOS ............................................................................................ 134 5 CONCLUSÃO ............................................................................................. 138 6 REFERÊNCIAS ........................................................................................... 138

CONCLUSÃO GERAL ............................................................................... 142

Page 10: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

i

EXTRATO

MARTINS, Cristina de Paula Santos, Ms., Universidade Estadual de Santa

Cruz, Ilhéus, marçode 2016. Caracterização molecular e funcional de genes

das famílias MIP (Proteína Intrínseca Principal) e GolS (Galactinol Sintase)

envolvidos na resposta a estresses bióticos e abióticos em citros. Orientador:

Dr. Marcio Gilberto Cardoso Costa. Co-orientadores: Dr. Alex-Alan Furtado de

Almeida e Dr. Abelmon da Silva Gesteira

Na agricultura mundial, as frutas cítricas ocupam o primeiro lugar em volume

de produção em fruticultura, sendo a laranja a principal fruta cítrica produzida.

O Brasil se destaca como o maior produtor mundial de laranja e exportador de

suco de laranja concentrado e congelado. A citricultura brasileira encontra-se

sustentada principalmente no porta enxerto limoeiro ‘Cravo’ (Citrus limonia

Osb.), cuja suscetibilidade a doenças vem provocando expressiva diminuição

na produção de frutos, tornando necessário uma diversificação dos porta

enxertos. Os principais porta enxertos alternativos ao limoeiro ‘Cravo’

apresentam algumas limitações, como suscetibilidade à seca. A biotecnologia

tem oferecido novas alternativas ao melhoramento genético de citros,

permitindo a introdução de genes de interesse sem alterar o padrão varietal.

Com a recente disponibilização da sequência do genoma da laranja doce

(Citrus sinensis), tornou-se possível acelerar o processo de identificação e

caracterização de genes candidatos de resistência/tolerância a estresses

bióticos e abióticos para exploração em programas de melhoramento genético

de citros empregando-se estratégias biotecnológicas. O presente trabalho teve

como objetivo caracterizar molecular e funcionalmente genes das famílias MIP

(proteína intrínseca principal) e GolS (galactinol sintase) envolvidos na resposta

a estresses bióticos e abióticos em citros. Para isso, ferramentas de análises

de sequências de DNA e proteínas, bem como de expressão gênica e função

gênica em sistemas-modelo foram empregadas, explorando-se as informações

do genoma de referência de C. sinensis disponíveis na base de dados do

Phytozome. Um total de 34 genes que codificam MIPs de C. sinensis (CsMIPs)

Page 11: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

ii

foram identificados e divididos em cinco subfamílias (CsPIPs, CsTIPs, CsNIPs,

CsSIPs e CsXIPs), que se encontram distribuídas em todos os cromossomos

de laranja doce. A expressão gênica de CsMIPs foi analisada em diferentes

tecidos e sob estresses por deficiência hídrica e salino, bem como com

infecção por 'Candidatus Liberibacter asiaticus', agente causador do HLB

(huanglongbing). Um papel especial na regulação do fluxo de água e nutrientes

é proposto para CsTIPs e CsXIPs durante estresse por deficiência hídrica, e

para a maioria de CsMIPs durante estresse salino e o desenvolvimento da

doença HLB. Plantas transgênicas de tabaco superexpressando CsTIP2;1

apresentaram maior crescimento e adaptação a estresses por deficiência

hídrica e salino devido ao maior conteúdo de água nas células, resultando na

maior dissolução do sal e auxiliando na expansão celular. Outros fatores que

contribuíram para amaior tolerância das plantas transgênicas foram a

atenuação dos danos oxidativos, pela detoxificação do H2O2, e indução da

abertura estomática, que contribuiu para a maior capacidade fotossintética,

taxa de transpiração e eficiência do uso da águasob condições de deficiência

hídrica. No genoma de laranja doce foram identificados oito genes da família

CsGolS. Análises de expressão gênica em plantas submetidas a estresses por

deficiência hídrica e salino, bem como com infecção por 'Candidatus

Liberibacter asiaticus', demonstraram que CsGolS foram diferencialmente

regulados pelos diferentes estresses, com maiores níveis de expressão

observado em folhas e raiz. Um papel fisiológico na tolerância a estresses por

deficiência hídrica e salino é proposto para CsGolS6, e para CsGolS5 na

tolerância ao HLB. CsGolS6 foi superexpresso em plantas de tabaco e as

linhagens transgênicas apresentaram maior capacidade fotossintética, porém

mantendo a taxa de transpiração e condutância estomática similares àquelas

da linhagem selvagem. Diante desses resultados, pode-se concluir que os

genes das famílias MIP e GolS desempenham papéis importantes na resposta

e tolerância de plantas cítricas a estresses bióticos e abióticos, representando

novos alvos para o melhoramento genético de citros.

Palavras–chave: Biotecnologia, citricultura, estresse hídrico, estresse osmótico

e HLB

Page 12: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

iii

ABSTRACT

MARTINS, Cristina de Paula Santos, Ms., University of Santa Cruz, Ilheus,

February 2016.Molecular and functional characterization of MIP (Major Intrinsic

Protein) and GolS (Galactinol Synthase) gene families involved in the response

to biotic and abiotic stresses in citrus. Advisor: Dr. Marcio Cardoso Gilberto

Costa. Co-advisors: Dr. Alex-Alan Furtado de Almeida and Dr. Abelmon da

Silva Gesteira

In the world agriculture, citrus fruits are top ranked in volume of production

among all the fruit crops. Brazil stands out as the world's largest orange

producer and exporter of frozen concentrated orange juice. The Brazilian citrus

industry is supported mainly in the rootstock Rangpur lime (Citrus limonia Osb.),

whose susceptibility to diseases has caused a significant decrease in the fruit

production. The major alternative rootstocks to Rangpur lime have some

limitations, such as susceptibility to drought stress. Biotechnology has offered

new alternatives to the genetic improvement of citrus, allowing the introduction

of genes of interest without changing the varietal background.With the recent

availability of the genome sequence of sweet orange (Citrus sinensis), it

became possible to accelerate the process of identification and characterization

of candidate genes for resistance/tolerance to biotic and abiotic stresses for

exploitation in citrus breeding programs using biotechnological strategies.The

objective of this study was to characterize molecular and functionally genes of

MIP (major intrinsic protein) and GolS (galactinol synthase) families involved in

the response to biotic and abiotic stresses in citrus. For this, DNA and protein

sequences analyses, as well as analyses of gene expression and gene function

in model systems, have been employed by exploiting the information of the

reference genome of C. sinensis available in the Phytozome database. A total

of 34 genes encoding C. sinensis MIPs (CsMIPs) were identified and divided

into five subfamilies (CsPIPs, CsTIPs, CsNIPs,CsSIPs and CsXIPs), which are

distributed over all the chromosomes of sweet orange. The CsMIPs gene

expression was analyzed in different tissues and under water deficit and salt

Page 13: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

iv

stresses, as well as to infection with 'Candidatus Liberibacter asiaticus', the

causalagent of the HLB (huanglongbing) disease. A special role in regulating

the water and nutrient flow is proposed to CsTIPs and CsXIPs during water

deficit, and for most CsMIPs during salt stress and the development of HLB

disease. Transgenic tobacco plants overexpressing CsTIP2;1 showed a higher

growth and a better adaptation to stresses by water deficit and salinity due to

the higher water content in their cells, resulting in increased salt dissolution and

contributing to the cell expansion. Other factors contributing to the increased

tolerance of the transgenic plants were the attenuation of oxidative damage by

detoxifying the H2O2, and stomatal opening, which contributed to the higher

photosynthetic capacity, transpiration rate and water use efficiency under water

stress conditions. Eight genes belonging to the CsGolS family were identified in

the sweet orange genome. Analysis of gene expression in plants subjected to

water deficit and salt stresses, as well as to infection with 'Ca. Liberibacter

asiaticus', showed that these genes were differentially regulated by the different

stresses, with the higher expression levels observed in leaves and roots. A

physiological role in the stress tolerance towater deficit and salinity is proposed

for CsGolS6, and for CsGolS5 in the tolerance to HLB. CsGolS6 was

overexpressed in tobacco plants and the transgenic lines showed a higher

photosynthetic capacity while maintaining the transpiration rate and stomatal

conductance similar to those of the wild-type. Thus, it was possible to observe

that this gene plays an important role in the response and tolerance of plants to

abiotic stresses. From these results, it can be concluded that the genes of the

MIP and GolS families play important roles in the response and tolerance of

citrus plants to biotic and abiotic stresses, representing new targets for genetic

improvement of citrus.

Keywords: Biotechnology, citriculture, water stress, osmotic stress and HLB

Page 14: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

1

1 INTRODUÇÃO GERAL

Os citros pertencem à família Rutaceae e os principais gêneros

comerciaissão Fortunella, Poncirus e Citrus. O gênero Citrus é o de maior

relevância comercial, sendo que as principais espécies cultivadas sãoa laranja

doce (Citrus sinensis L. Osb.), tangerinas (C. reticulata, C. deliciosae C.

clementina), limão (C. limon), limas ácidas (C. latifolia e C. aurantifolia) e

pomelo (C. paradisi Macf.) (SIMÃO, 1998; PIO et al.,2005). A cultura dos citros

desempenha um papel de acentuada importância sócio-econômica onde, neste

contexto, o Brasil se destaca comoo maior produtor mundial de laranja, com

produção de cerca de 30% da produção mundial (MAPA, 2015). O Brasil

também ocupa uma posição de destaque no cenário internacional como o

maior exportador de suco de laranja concentrado congelado, com produção de

810,7 mil toneladas, representando 60% da produção mundial de suco de

laranja (MAPA,2015). A agroindústria citrícola brasileira está concentrada no

Estado de São Paulo, sendo responsável por 68% da produção nacional de

laranja e pelo processamento de praticamente toda a safra nacional de laranja

(IBGE, 2015). O Nordeste brasileiro detém, após o Estado de São Paulo, a

citricultura de maior expressão, graças à liderança nesse setor dos Estados da

Bahia e Sergipe (IBGE, 2015).

A principal forma de propagação do citros é por enxertia, sendo que os

porta enxertos influenciam em mais de 20 características hortícolas e

patológicas dos citros, destacando-se: a absorção, síntese e utilização de

nutrientes; transpiração e composição química das folhas; resposta aos

produtos de abscisão de folhas e de frutos; porte, precocidade de produção e

longevidade das plantas; maturação, peso e permanência de frutos na planta;

coloração da casca e do suco; teores de açúcares, ácidos e de outros

componentes do suco; tolerância aos insetos-praga, doenças e fatores

abióticos, como frio, salinidade e seca; conservação pós-colheita; produtividade

e qualidade da frutas (POMPEU JUNIOR, 1991; 2005).

Possível híbrido natural entre o limoeiro verdadeiro [C. limon (L.) Burm.

f.] e a tangerineira (C. reticulata sensu Swingle), o limoeiro ‘Cravo’(Citrus

Page 15: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

2

limonia Osbeck) possui diversas características que o qualificam como porta

enxerto de preferência na citricultura brasileira por apresentar: tolerância à

seca e a tristeza dos citros, facilidade de obtenção de sementes,

compatibilidade adequada com a maioria das variedades copas, indução de

crescimento, produção precoce e alta produtividade às copas nele enxertadas

(POMPEU JUNIOR, 2005). Porém a suscetibilidade de ‘Cravo’ à Morte Súbita

dos Citros (MSC) se tornou um sério problema na atualidade, tendo como

consequência a expressiva diminuição na produção de frutos (CANTAGALLO

et al., 2005). A diversificação de portaenxertos na citricultura é fundamental,

com ênfase na busca de variedades melhores adaptadas às condições de

déficit hídrico, já que a citricultura brasileira é conduzida praticamente sem

irrigação (SANTOS et al., 1999). O desenvolvimento de variedades tolerantes

ao déficit hídrico associado à utilização racional da água é indicado para a

manutenção da produção agrícola em situações de escassez hídrica (CHAVES

et al., 2003).

O desenvolvimento de novas variedades portaenxerto capazes de

substituir o ‘Cravo’ é uma tarefa difícil, devidoaos problemas associados a

biologia reprodutiva dos citros que limitam a execução de programas

convencionais de melhoramento genético desse grupo de plantas. Por outro

lado, a biotecnologia, por meio das técnicas de cultura de tecidos e

transformação genética, tem oferecido novas alternativas para o melhoramento

dos citros, permitindo a introdução de genes de interesse sem alterar o padrão

varietal. Em citros a transformação genética já é um processo bem

estabelecido (COSTA et al., 2007).No entanto, a principal limitação para o uso

dessa ferramenta no melhoramento de citros é a escassez de genes

identificados e caracterizados governando caracteres de importância

agronômica em plantas cítricas. Com a recente disponibilização da sequência

do genoma da laranja doce (WU et al., 2014), esse processo passou a ser

facilitado consideravelmente.

MIPs constituem uma superfamília de proteínas de membrana, as quais

têm sido caracterizadas por atuarem como componentes centrais das relações

hídricas em plantas. MIPs que transportam especificamente água são

chamadas de aquaporinas (JOHANSON etal., 2001). A descoberta de

aquaporinas trouxe uma nova visão do mecanismo de transporte de água

Page 16: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

3

transmembrana, fornecendo a base molecular para uma rápida e sólida

regulação reversível de transporte de água em determinados processos

fisiológicos (MAUREL, 1997; MAUREL e CHRISPEELS, 2001). A abundância e

a atividade dessas proteínas na membrana plasmática e tonoplasto podem ser

reguladas, permitindo que a planta controle o fluxo de água dentro e fora das

células (MAUREL, 2007; KALDENHOFF; FISCHER, 2006; JOHANSSON et al.,

2000; JAVOT; MAUREL, 2002). Estudos têm demonstrado que a expressão de

genes codificando paraaquaporinas é induzida em resposta a

estressesabióticos, como seca e salinidade, melhorando a eficiencia das

plantas com relação à utilização da água (LU; NEUMANN, 1999; SIEFRITZ et

al., 2002; JANG et al., 2004; ALEXANDERSSON et al., 2010).

Membros da família GolS codificam para a enzima-chave na biossíntese

de oligossacarídeos de rafinose, catalizando a formação de galactinol e UDP a

partir de UDP-gal e mio-inositol. GolS possui papel chave como regulador na

distribuição de carbono entre sacarose e oligossacarídeos de rafinose

(HANDLEY et al., 1983; SARAVITZ et al., 1987; LOWELL; KUO, 1989).

Oligossacarídeos de rafinose são sintetizados a partir da sacarose, por meioda

subsequente adição de ativadores de Gal doado por galactinol (PETERBAUER;

RICHTER, 2001). A expressão de enzimas relacionadas com a biossíntese de

galactinol e oligossacarídeos de rafinose e sua acumulação intracelular em

células vegetais estão intimamente associados com as respostas de estresse

ambiente, contribuindo para a distribuição de solutos compatíveis para

proteção das células (TAJI et al., 2002; DOWNIE et al., 2003; ZUTHER et al.,

2004; KAPLAN et al., 2004; PANIKULANGARA et al., 2004; PETERS et al.,

2007).

O presente estudo partiu da hipótese de que genes das famílias MIP e

GolS desempenham importantes funções na tolerância de plantas cítricas a

estresses bióticos e abióticos. No Capítulo 1 é apresentado um estudo sobre a

identificação da série completa de genes MIPs presentes no genoma de laranja

doce, bem como a caracterização quanto às suas sequências, relações

filogenéticas, organização genômicae expressão gênica em diferentes tecidos

e em resposta a diferentes estresses bióticos e abióticos. O Capítulo 2 trata da

caracterização funcional de um gene da família MIP, CsTIP2;1, por meio da

sua superexpressão em plantas de tabaco e análise das plantas transgênicas.

Page 17: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

4

O Capítulo 3 apresenta um estudo sobre a identificação e caracterização de

genes da família GolS presentes no genoma de laranja doce, bem como a

caracterização funcional de um de seus membros, CsGolS6, por meio da

superexpressão e análise de plantas transgênicas de tabaco. Coletivamente,

os resultados obtidos no presente estudo permitiram ampliar a base de

conhecimento potencialmente aplicável ao melhoramento, bem como facilitar o

desenvolvimento de novas variedades porta enxerto tolerantes a estresses

bióticos e abióticos e potencialmente úteis para a citricultura brasileira.

Page 18: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

5

2 OBJETIVOS

2.1 Objetivo geral

Caracterizar molecular e funcionalmente genes das famílias MIP e GolS

envolvidos na resposta a estresses bióticos e abióticos em citros.

2.2 Objetivos específicos

1) Identificar genes das famílias MIP e GolS presentes no genoma de

referência de C. sinensis;

2) Analisar as relações filogenéticas dos membros de cada família com

homólogos de outras espécies vegetais;

3) Caracterizar as sequências de DNA e proteínas dos membros de cada

família;

4) Caracterizar a expressão gênica dos membros de cada família em

plantas submetidas a estresses bióticos e abióticos;

5) Caracterizar a função dos genes candidatos de tolerância a estresses

por meio da expressão transgênica em sistemas-modelo.

Page 19: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

6

3 REVISÃO DE LITERATURA

3.1 Aspectos gerais e econômicos da citricultura

Os citros são originários de regiões com clima tropical e subtropical do

sul e sudeste Asiático (MOORE, 2001; NICOLOSI, 2007). A classificação das

espécies de Citrus é complexa, sendo variável principalmente pelo número de

espécies. Os sistemas taxonômicos que mais se destacam são os de Swingle e

Reece (1967) e o de Tanaka (1977). O gênero Citrus pertence à ordem

Geraniales, família Rutaceae, subfamília Aurantioideae, tribo Citreae, subtribo

Citrineae, sendo composto por seis gêneros Poncirus, Fortunella e Microcitrus,

Clymenia, Eremocitrus e Citrus (SWINGLE, REECE, 1967; TANAKA, 1977;

NICOLOSI, 2007), que são coletivamente chamadas de citros.

Horticulturamente, os citros podem ser agrupados em laranjeiras doce

[Citrus sinensis (L.) Osbeck], tangerineiras (Citrus reticulata Blanco), limoeiros

[Citrus limon (L.) Buen. F.], limeiras ácidas [Citrus aurantifolia (Christm.)

Swingle e Citrus latifolia (Yu. Tanaka)], pomeleiros (Citrus paradisi Macf.), entre

outras (SIMÃO, 1998; PIOet al.,2005). Algumas espécies e seus híbridos são

utilizadas principalmente como porta-enxertos, como o limoeiro ‘Cravo’ (C.

limonia Osbeck), limoeiro ‘Volkameriano’ (C. volkameriana V. Ten. & Pasq.),

tangerineira ‘Sunki’ (C. sunki hort. ex Tanaka), tangerineira ‘Cleopatra’ (C.

reshni hort. ex Tanaka), laranjeira azeda (C. aurantium L.) e citrumeleiro

‘Swingle’ [C. paradisi Macf. cv. Duncan x P. trifoliata (L.) Raf.] (POMPEU

JUNIOR, 2005).

As plantas cítricas podem ser multiplicadas por sementes (via sexual),

por alporquia, estaquia e enxertia (via assexual), sendo este último método

mais utilizado comercialmente por apresentar algumas vantagens, entre as

quais se destacam a uniformidade das mudas, precocidade no início de

produção e aumento na produtividade, além de se obter mudas idênticas à

planta-mãe e maior resistência ou tolerância a condições desfavoráveis de

clima, solo, pragas e doenças de acordo com o porta enxerto ou combinação

utilizada (POMPEU JUNIOR, 2005).

Page 20: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

7

As características apresentadas pelo limoeiro ‘Cravo’ o tornaram o

preferido pelos citricultores, de modo que a partir da década de 60 passou a

ser praticamente o único portaenxerto da citricultura paulista (POMPEU

JÚNIOR, 2005). O limoeiro ‘Cravo’ é considerado um híbrido natural entre

limoeiro e tangerineira, originado na região de Canton, no sul da China.

Apresenta média resistência às gomoses de P. parasitica e P. citrophthora, é

suscetível a nematóides (Tylenchulu semipenetrans e Pratylenchus jaehni),

tolerante ao vírus da tristeza dos citros, suscetível ao declínio dos citros e

tolerante à seca. Apresenta melhor desempenho quando plantado em solos

arenosos e profundos e pode apresentar produtividade inferior à das

tangerineiras ‘Cleópatra’ e ‘Sunki’ quando plantado em solos argilosos. Em

2014, os porta enxertos mais empregados na citricultura paulista foram o

limoeiro ‘Cravo’(53%), o citrumeleiro ‘Swingle’ (32%), a tangerineira ‘Sunki’

(11%), a tangerineira ‘Cleópatra’ (1,6%), o Poncirus trifoliata (1,4%) e o limoeiro

‘Volkameriano’ (0,7%) (IAC, 2014).

Cultivado em mais de 130 países, os citros constituem uma das mais

importantes fruteiras cultivadas no mundo, com produção de aproximadamente

131 milhões de toneladas por ano. China, Brasil e Estados Unidos são os

principais países produtores de citros, respondendo por mais de 50% da

produção mundial (FAO, 2014). A citricultura brasileira ocupa uma posição de

destaque no cenário internacional, sendo o maior produtor de laranja

(aproximadamente 30% da produção mundial) e o maior exportador de suco de

laranja concentrado e congelado, onde representa 60% da produção mundial

de suco de laranja (MAPA, 2015). Levantamentos destacam que o Estado de

São Paulo é o líder na produção de laranja em território nacional, participando

com aproximadamente 68% da produção e pelo processamento de

praticamente toda a safra nacional de laranja. Minas Gerais é o segundo maior

produtor de laranja doce seguidos pelo estado de Bahia e Sergipe, que

praticamente se igualam na produção de citros (IBGE, 2015).

As mudanças com relação à migração do local de produção de laranja

estão relacionadas principalmente com os problemas fitossanitários que vêm

atingindo os pomares. Esse fato ocorre em razão da base genética dos

pomares estarem concentradas em copas de laranja ‘Pera’ e no uso de porta

enxerto limão ‘Cravo’ (FERREIRA et al., 2013). Dentre as doenças que causam

Page 21: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

8

expressivos danos na produção pode-se destacar a gomose de Phytophthora

(Phytophthora spp.), pinta preta (Guignardia citricarpa Kiely), tristeza dos citros

(Citrus tristeza virus), cancro cítrico (Xanthomonas citri pv. citri), a morte súbita

dos citros (MSC) e o huanglongbing (HLB), que está associado a bactéria

Candidatus Liberibacter spp. (MATTOS-JUNIOR, 2005). Há necessidade de

diversificação das variedades de porta-enxerto, porém essas devem apresentar

características de tolerância à seca como o limoeiro ‘Cravo’ e a doenças

agressivas como o HLB.

3.2 Respostas moleculares e fisiológicas à deficiência hídrica em citros

As plantas que são tolerantes à seca apresentam uma série de

mecanismos para que, durante o estresse, as respostas sejam rapidamente

ativadas. Cada planta possui uma percepção do sinal, assim como a regulação

molecular e fisiológica, que se reflete nas diferenças de tolerância à seca inter

e intra-específica (BARTELS; SUNKAR, 2005). Secas tendem a promover

alterações no crescimento e desenvolvimento das plantas de citros

promovendo a queda das folhas e aumentando a massa do sistema radicular

para promover a aquisição de água nos solos mais profundos (RODRIGUEZ-

GAMIR et al., 2010). Diferenças entre indivíduos da mesma espécie foram

relatadas para Citrus (GARCÍA-SÁNCHEZ et al., 2007) em relação às variáveis

fisiológicas, como eficiência do uso da água (KNIGHT et al., 2006;

KLAMKOWSKI;TREDER, 2008) e ao estágio de desenvolvimento e à atividade

de diversas enzimas (HONG et al., 2005). O balanço hídrico dos portaenxertos

limão Volkameriana (Citrus volkameriana P.), limão Cravo (Citrus limonia O.),

limão Rugoso (Citrus jambhiri L.) e tangerina Cleópatra (Citrus reshni Hort. Ex

Tan.) foi analisado em condições de campo, sendo a laranja Pêra (Citrus

sinensis L.) utilizada como copa. De acordo com os resultados, o porta enxerto

menos adaptados ao estresse hídrico foi à tangerina Cleópatra e o limão Cravo

foi o que melhor se adaptou por apresentar menor taxa de evapotranspiração

(CINTRA et al., 2000). O limão 'Cravo' se destaca como variedade tolerante à

seca, enquanto tangerina 'Sunki Maravilha' mostra maior suscetibilidade ao

estresse hídrico em comparação a primeira, confirmada pela desidratação foliar

acentuada apresentada por esta tangerina durante o estresse hídrico e análise

Page 22: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

9

de parâmetros fisiológicos, como razão de área foliar, potencial de água foliar,

resistência estomática, e análise molecular como níveis de ABA e perfil de

expressão gênica da família NCED (NEVES et al., 2013). Outros porta enxertos

de plantas cítricas, como tangerineira Cleópatra e Poncirus trifoliata, também

respondem à seca por meio do envio de sinais para as folhas, induzindo o

fechamento dos estômatos, reduzindo assim a perda de água por transpiração

(RODRIGUEZ-GAMIR et al., 2010).

As plantas necessitam de gás carbônico (CO2) para realizar

fotossíntese, porém muitas vezes elas têm que se adaptar entre a perda de

água (H2O) e a absorção de CO2, que é modulado pela regulação estomática.

Este mecanismo depende do vapor de água, do CO2 e das variações da

pressão de turgescência das células guarda. Em situação de seca, a regulação

da abertura estomática é controlada pelo ácido abcísico (ABA), o principal

hormônio envolvido no fechamento estomático, assim como pelas citocininas,

para a abertura dos estômatos (TAIZ; ZEIGER, 2003). É comum o fechamento

dos estômatos em resposta à seca. Assim, com os estômatos fechados, o CO2

deixa de entrar na folha, o que leva a uma limitação do substrato disponível

para a enzima RUBISCO, reduzindo a taxa fotossintética e a assimilação de

CO2(TAIZ; ZEIGER, 2003). A entrada de CO2 nas plantas é regulada em

função da disponibilidade deste gás, assim como pela abertura dos estômatos,

como demonstram as diferenças na resposta da fotossíntese à concentração

interna (Ci) de CO2 (TALLMAN, 2004).

Pesquisas sobre a genética das respostas à deficiência hídrica em

plantas cítricas têm sidodesenvolvidas por alguns autores. Citros em condição

de deficit hídrico, ocorreu aumento da regulação específica de NCED3 em

tecidos fotossinteticamente ativos, como folhas e ovários em desenvolvimento

(AUGUSTI et al., 2007). A resposta do transcriptoma da tangerina 'Clementina'

(C. clementina Ex Tanaka) enxertada em tangerina 'Cleópatra' (C. hort reshni

Ex Tanaka) foi analisada em condições de déficit hídrico (GIMENO et al.,

2009). Genes que codificam para proteínas envolvidas na síntese de lisina,

prolina e catabolismo da rafinose, redução de peróxido de hidrogênio,

transporte de malato vacuolar e defesa (incluindo osmótica, desidratação e

chaperones) foram induzidos sob a condição de estresse (GIMENO et al.,

2009). Análise da família NAC de fatores de transcrição resultou na

Page 23: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

10

identificação de um membro, CsNAC1, que foi induzido por déficit hídrico nas

folhas de tangerina 'Cleópatra' e limão Cravo e pelo estresse salino, frio e ácido

abscísico (ABA) em folhas e raízes de tangerina 'Cleópatra' (OLIVEIRA et al.,

2011). A expressão dos genes PIP1 e PIP2, foi investigada em raízes de

Poncirus trifoliata (L.) Raf. e tangerina ‘Cleópatra’ (C. reshni Hort ex Tan.)

submetidos ao déficit hídrico moderado (RODRÍGUEZ-GAMIR et al., 2011), e

em raízes de P. trifoliata, tangerina ‘Cleópatra’ e citrange ‘Carrizo’[C. sinensis

(L.) Osb. × P. trifoliata (L.) Raf.], submetido a tratamento de estresse salino

(RODRÍGUEZ-GAMIR et al., 2012). A diferença de expressão de PIP1 e PIP2

foi correlacionada com alterações na condutividade hidráulica da raiz e a

exclusão de cloreto de sódio das folhas e, consequentemente, com a tolerância

à estresses hídrico e salino, respectivamente. Da mesma forma, a

condutividade hidráulica da raiz e transpiração em citros foram reduzidas em

condição de estresse salino (RODRIGUEZ-GAMIR et al., 2012).

3.3 Proteínas Intrínsecas Principais (MIPs)

As MIPs constituem uma superfamília de proteínas transmembranas,

com peso molecular entre 23-31 kDa, que se encontram presentes em todos os

organismos. As MIPs, também conhecidas como aquaporinas, possuem uma

estrutura tetramérica, composta por quatro monômeros, cada um com um poro

ativo (MAUREL et al., 2008).

Esta família com membros em animais, plantas e micróbios, é composta

por proteínas integrais de membrana que facilitam a transferência bidirecional

de água e pequenos solutos em membranas biológicas (JOHANSON et al.,

2001). A função das aquaporinas, como reguladores do transporte de água, foi

descoberta através da expressão de uma aquaporina humana em oócitos de

Xenopus, em que se obteve um aumento da permeabilidade à água

(TYERMAN et al., 2002). A primeira aquaporina descoberta em plantas foi da

subfamilia TIP (tonoplast intrinsic protein), presente no tonoplasto, o que

potencializou a pesquisa de mais genes desta família (TYERMAN et al., 2002).

Inicialmente, as aquaporinas foram identificadas como canais de

transporte seletivo de água (MAUREL et al., 1993). Porém, novos estudos

evidenciaram que esses canais também podem transportar glicerol (GERBEAU

Page 24: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

11

et al., 1999.; LI et al., 2008), uréia (KLEBL et al., 2003; GERBEAU et al, 1999;

DYNOWSKI et al, 2008), peróxido de hidrogênio (H2O2) (BIENERT et al., 2007;

DYNOWSKI et al., 2008) e compostos gasosos como a amônia (NH3) (JAHN et

al., 2004; LOQUE et al., 2005; DYNOWSKI et al., 2008) e dióxido de carbono

(CO2) (WU; BEITZ, 2007).

As aquaporinas possuem um papel importante em situações de

estresses abióticos, como seca e salinidade. Vários estudos demonstraram

que, em casos de estresse hídrico, a transcrição de genes das aquaporinas é

alterada, sendo que o padrão de expressão destes genes é coincidente com

um aumento da tolerância das plantas (MARTRE et al., 2002; MAUREL et al.,

2008). Em mudas de arroz submetidas ao estresse hídrico, ocorreu o aumento

no funcionamento fisiológico dos canais de água pelo aumento da atividade de

água do canal da raiz ou pelo aumento do número de aquaporinas em

comparação com mudas de plantascontrole não submetidas ao estresse (LU;

NEUMANN, 1999). A diminuição da expressão do gene aquaporinI, que está

presente na membrana plasmática em plantas de Arabidopsis thaliana,reduziu

a condutividade hidráulica dessa planta, levando ao decréscimo na tolerância à

seca (SIEFRITZ et al., 2002).

A regulação transcricional das MIPs é realizada de diferentes formas.

Podem ser induzidas por diferentes hormônios, como ABA e giberelinas, por

diferentes fatores de estresse abiótico e por modificações pós-traducionais,

através de fosforilação (MAUREL et al., 2002). A fosforilação das aquaporinas

leva à abertura do poro, em oposição ao mecanismo de fechamento, que passa

pela percepção de protóns (MAUREL et al., 2008).

Em seres humanos (Homo sapiens) foram descritos 13 MIPs (MAGNI et

al., 2006), enquanto que em plantaso número total de MIPs é particularmente

elevado, em comparação com os animais, com 35 membros identificados no

genoma de Arabidopsis (JOHANSON et al., 2001), 36 em milho (Zea mays)

(CHAUMONT et al., 2001), 33 em arroz (Oryza sativa) (SAKURAI et al., 2005),

28 em videira (Vitis vinifera) (FOUQUET et al., 2008), 56 em Populus

trichocarpa (GUPTA; SANKARARAMAKRISHNAN, 2009).Por homologia, os

genes de Arabidopsis thaliana foram agrupados em quatro classes ou

subfamílias diferentes. O maior subgrupo é formado pelas proteínas intrínsecas

da membrana plasmática (PIPs), contendo treze genes, seguido pelas

Page 25: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

12

proteínas intrísecas do tonoplasto (TIPs), que possuem dez genes homólogos.

Proteínas intrínsecas do tipo Nodulin-26 (NIPs) foram inicialmente

caracterizadas como exclusivamente expressas em membranas

peribacteróides fixadoras de nitrogênio em raizes simbióticas, em nódulos de

leguminosas, e em Arabidopsis thaliana, em que nove membros estão

presentes. A quarta categoria inclui as proteínas intrínsecas pequenas (SIPs)

(LUU; MAUREL, 2005). Pesquisas atuais mostram a existência de outros

membros das aquaporinas (GUSTAVSSON et al., 2005; DANIELSON;

JOHANSON, 2008), porém os quatro grupos descritos acima ainda são

considerados os principais.

As aquaporinas possuem diversas funções de transporte em vários

compartimentos subcelulares. Isoformas das proteínas intrínsecas de

membrana (PIP1 e PIP2) estão relacionadas com a via secretora, que promove

o transporte de partículas a partir do retículo endoplasmático (ER). PIPs

também passam por ciclos repetidos de endocitose e reciclagem, através de

compartimentos endossomais, antes de eventualmente voltarem para o

vacúolo lítico através dos corpos multivesiculares (ROBINSON et al., 1996). As

proteínas intrínsecas do tonoplasto TIP1s (GAMA-TIPs) são encontradas na

membrana do vacúolo lítico, já TIP2s (DELTA-TIPs) e TIP3s (BETA-TIPs) estão

preferencialmente associadas a vacúolos que acumulam proteínas de reserva

em células vegetativas e em sementes, respectivamente. As proteínas

intrínsecas do tipo Nodulin-26 (NIP) mostram um amplo espectro no padrão de

localização subcelular. AtNIP2;1 está localizada no RE e na membrana

plasmática (CHOI; ROBERTS, 2007; MIZUTANI, et al., 2006). Em Oryza sativa,

OsNIP2;1 (transportador de silício) e em Arabidopsis thaliana, AtNIP5;1

(transportador de ácido bórico), estão localizadas na membrana plasmática,

enquanto que em soja (Glycine max), GmNOD26 é exclusivamente expressa

na membrana peribacteroide (MAUREL et al., 2008).

3.4 Galactinol sintase

A família dos oligossacarídeos da rafinose (RFO) possui múltiplas

funções em plantas e é encontrada nas folhas de várias famílias de plantas

superiores (LEE et al., 1970; KUO et al., 1988; CASTILLO et al.,1990). Os

Page 26: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

13

oligossacarídeos da família dos RFOs estão relacionados com a proteção

contra estresses abióticos (BACHMANN et al., 1994; HARITATOS et al.,1996).

A biossíntese de RFOs inicia-sea partir da sacarose através da adição de

unidades de galactose doados por galactinol (O-α-D-galactopiranosil- (1 → 1) -

L-mio-inositol). Galactinol sintase (GolS, CE 2.4.1.123) pertence a uma família

de glicosiltransferases envolvidas na primeira etapa da biossíntese RFOs. GolS

catalisa a transferência de UDP-D-galactose para mio-inositol (SCHNEIDER;

KELLER, 2009) e é considerado o principal regulador da via biossintética

(PETERBAUER; RICHTER, 2001). Outros oligossacarídeos desta via

(estaquiose, verbascose e ajugose) são formados sequencialmente pela ação

de galactosil-transferases específicas usando galactinol como o doador de

galactosil. Vários estudos têm demonstrado que a expressão dos genes

relacionados com a biossíntese e acumulação intracelular de galactinol e

rafinose está associadaa respostas de estresse ambientais (TAJI et al., 2002;

PANIKULANGARA et al., 2004; PETERS et al., 2007).

Dez genes GolS foram identificados no genoma de A. thaliana

(NISHIZAWA et al., 2008), três dos quais (AtGolS1, AtGolS2 eAtGolS3) foram

induzidos por estresses abióticos (TAJI et al., 2002). Os genes AtGolS1 e 2

foram induzidos em condições de estresse hídrico e salino, enquanto que o

AtGolS3 foi induzido em baixas temperaturas. As plantas de A. thaliana

submetidas às condições de estresse acumularam grande quantidade de

galactinol e rafinose, sendo que nas plantas não estressadas esses açúcares

não foram detectados. Isto sugere que rafinose e galactinol estão envolvidos na

tolerância a estresses abióticos, atuando como osmoprotetores (TAJI et

al.,2002). Foi observada relação entre a expressão de AtGolS1 nas folhas de

A. thaliana e a síntese de RFOs em plantas submetidas aseca, sugerindoum

papel importante deste gene na expressão do estresse induzido pelo calor

(PANIKULANGARA et al., 2004).

Plantas de tabaco superexpressando constitutivamente o gene CsGolS

de Corynespora cassiicola aumentaram a quantidade de galactinol em raízes e

apresentaram resistência contra os patógenos Botrytis cinerea e Erwinia

carotovora. Tanto as plantas de tabaco transgênicas como o controle, tratadas

com galactinol em aplicação exógena, também demonstraram um aumentona

tolerância a seca e ao estresse salino (KIM et al., 2008). Transcritos de

Page 27: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

14

BhGolS1 da planta Boea hygrometrica foram induzidos por ABA e a

superexpressão desse gene em plantas de tabaco aumentou a tolerância à

desidratação (WANG et al., 2009). A regulação diferencial de três isoformas de

GolS em Coffea arabica (CaGolS1, CaGolS2, CaGolS3) sob déficit hídrico, alto

teor salino e condições de choque térmico, ressaltaram a formação de rafinose

e estaquiose durante esses estresses (dos SANTOS et al., 2011). Entre estes

genes, CaGolS1 foi expressa em plantas sob condições normais de

crescimento e também foi a mais responsiva a estresse quando as plantas

foram submetidas à deficiência hídrica.

3.5 Huanglongbing

O huanglongbing (HLB), também conhecido como ‘greening’, é

considerado uma das doenças mais destrutivas de citros, causando a morte de

milhões de plantas cítricas em todo o mundo (BOVE 2006; GOTTWALD et al.

2007; GOTTWALD, 2010). Foi relatada pela primeira vez em 1919, no sul da

China, como a doença do ramo amarelo (“yellow shoot disease”) (REINKING,

1919; CHEN, 1943; LIN, 1956). Na África, em 1937, uma doença com sintomas

similares, porém associada a uma espécie diferente de Liberibacter, foi descrita

como “greening” (VAN DE MERWE; ANDERSON, 1937). Atualmente o HLB

está disseminado nos cinco continentes do mundo (BOVE, 2006). No Brasil a

doença foi relatada pela primeira vez em 2004 na região de Araraquara, Estado

de São Paulo (COLLETA-FILHO et al., 2004; TEIXEIRA et al., 2005).

Atualmente a doença também já foi relatada em outras regiões citrícolas do

estado de São Paulo, Minas Gerais e Paraná. Nos Estados Unidos, a primeira

constatação ocorreu no estado da Flórida, em 2005 (TEIXEIRA et al., 2005). O

HLB foi relatado em Cuba em 2007 (LLAUGER et al., 2008, PANTOJA et al.,

2008, LUIS et al., 2009), na República Dominicana (MATOS et al., 2009) e no

México (NAPPO - www.pestalert.org) em 2008, em Belize, Jamaica e Porto

Rico em 2009 (International Society for Infectious Diseases -

www.promedmail.org).

O HLB está associado a três espécies de bactérias gram-negativas que

são denominadas de Candidatus Liberibacter asiaticus, Candidatus Liberibacter

africanus e Candidatus Liberibacter americanus (GARNIER et al., 1984;

Page 28: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

15

JAGOUEIX et al., 1994; TEIXEIRA et al., 2005). O prefixo Candidatus é uma

denominação temporária (MURRAY; SCHLEIFER, 1994), já que a classificação

taxonômica definitiva ainda não foi realizada devido à dificuldade de cultivo do

Liberibacter, mesmo após algumas tentativas (SECHLER et al., 2009). A

identificação e classificação destas espécies foram obtidas com base em

estudos de microscopia eletrônica (GARNIER; DANEL; BOVÉ, 1984) e de

comparações de sequências da região 16S do DNA ribossomal (JAGOUEIX;

BOVÉ; GARNIER, 1994). As bactérias são disseminadas no campo por inseto,

por meio de borbulhas infectadas (LOPES; FRARE, 2008; COLETTA-FILHO et

al., 2010) ou da planta parasita Cuscuta spp. (GARNIER; BOVÉ, 1983). O

psilídeo asiático dos citros, Diaphorina citri Kuwayama (Hemiptera: Liviidae) é

descrito como o vetor de Ca. L. asiaticus e Ca. L. americanus (CAPOOR et

al.,1967; CATLING, 1970; PANDE, 1971; YAMAMOTO et al., 2006), e o

psilídeo africano Trioza erytreae (Del Guercio) (Hemiptera: Triozidae) o vetor

de Ca. L. africanus (McCLEAN et al.,1965). As bactérias associadas a esta

enfermidade mantém uma relação persistente com o inseto vetor (XU et al.,

1988; HUNG et al., 2004).

A identificação de plantas doentes é feita por meio da observação dos

sintomas, que se iniciam como manchas amareladas assimétricas no limbo

foliar que contrastam com a cor verde normal das folhas. Outros sintomas

relacionados à doença são sistema vascular de coloração alaranjada, folhas

com tamanhos reduzidos e cloróticas similar a deficiência de manganês, ferro e

zinco (BOVÉ, 2006). Floradas fora de época podem ocorrer, intensa desfolha

dos ramos afetados, progredindo por toda a planta, causando seca e morte dos

ponteiros (HALBERT; MANJUNATH, 2004). Os frutos de ramos sintomáticos

apresentam-se de tamanho reduzido, assimétricos, com maturação irregular,

escurecidos ou abortadas (BOVE, 2006). O surgimento dos sintomas varia de

acordo com a transmissão da bactéria, sendo que infecção via enxertia o

tempo necessário é em torno de quatro meses (LOPES; FRARE, 2008). Caso a

infecção ocorra via inseto vetor, o tempo é em geral de oito meses (HUNG et

al., 2001). Ainda não há variedades de citros resistentes ao HLB e nem

tratamento fitossanitário capaz de reverter os sintomas da doença (LOPES et

al., 2007). Assim impedir a infecção das plantas é fundamental para o controle

do HLB que atualmente se baseia no plantio de mudas sadias, eliminação de

Page 29: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

16

plantas com sintomas, controle químico do inseto vetor e a eliminação das

plantas de murta (Murraya exotica), pois é considerada hospedeira de

Liberibacter (LOPES et al., 2010; GASPAROTO, 2010).

Page 30: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

17

4. REFERENCIAS

ALEXANDERSSON, E., DANIELSON, J.A.H., RADE, J., MOPARTHI, V.K.,

FONTES, M., KJELLBOM, P., et al. Transcriptional regulation of aquaporins in

accessions of Arabidopsis in response to drought stress. Plant J. 61: 650–660,

2010.

AGUSTI, J., ZAPATER, M., IGLESIAS, D.J., CERCOS, M., TADEO, F.R.,

TALON, M. Differential expression of putative 9-cis-epoxycarotenoid

dioxygenases and abscisic acid accumulation in water stressed vegetative and

reproductive tissues of citrus. Plant Sci 172: 85-94, 2007.

BACHMANN, M., MATILE, P., KELLER,F. Metabolism of the raffinose family

oligosaccharides in leaves of Ajuga reptans L. (cold acclimation, translocation,

and sink to source transition: discovery of chain elongation enzyme). Plant

Physiol.105: 1335–1345, 1994.

BARTELS, D, SUNKAR, R.Drought and salt tolerance in plants. Crit Rev Plant

Sci,24:23-58, 2005.

BIENERT, G.P., MOLLER, A.L., KRISTIANSEN, K.A., SCHULZ, A., MOLLER,

I.M., SCHJOERRING, J.K. et al. Specific aquaporins facilitate the diffusion of

hydrogen peroxide across membranes. J Biol Chem 282: 1183-1192, 2007.

BOVE, J.M.Huanglongbing: A destructive, newly-emerging, century-old disease

of citrus. Journal of Plant Pathology 88: 7–37, 2006.

CANTAGALLO, F.S., AZEVEDO, F.A., SCHINOR, H., FILHO, F.A.A.M.,

MENDES, B.M.J. Micropropagação de citrumelo swingle‘ pelo cultivo in vitro de

gemas axilares. Revista Brasileira de Fruticultura27: 136-138, 2005.

CAPOOR, S.P., RAO, D.G., VISWANATH, S.M. Diaphorina citri Kuwayama, a

vector of greening disease of citrus in India. Indian J. Agric Scien,37:572-576,

1967.

CATLING, H.D. Distibution of the psyllid vectors of citrus greening disease, with

notes on the biology and bionomics of Diaphorina citri. FAO Plant Protection

18:8-15, 1970.

CASTILLO, E.M., DE LUMEN, B.O., REYES, P.S., DE LUMEN, H.Z. Raffinose

synthase and galactinol synthase in developing seeds and leaves of legumes. J

Agric Food Chem 38: 351–355, 1990.

Page 31: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

18

CHAUMONT, F., BARRIEU, F., WOJCIK, E., CHRISPEELS, M. J., JUNG, R.

Aquaporins constitute a large and highly divergent protein family in maize. Plant

Physiol 125: 1206–1215, 2001.

CHAVES, M.M., MAROCO, J.P.,PEREIRA, J.S. Understanding plant responses

to drought: from genes to the whole plant. Funct Plant Biol30: 239–264, 2003.

CHEN, Q. A report of a study on yellow shoot disease of citrus in Chaoshan.

New Agriculture Quarterly Bulletin 3: 142-177, 1943.

CHOI, W.G., ROBERTS, D.M. Arabidopsis NIP2;1, a major intrinsic protein

transporter of lactic acid induced by anoxic stress. J Biol Chem 282:24209–18,

2007.

COLETTA-FILHO, H.D., CARLOS, E.F., ALVES, K.C.S., PEREIRA, M.A.R.,

BOSCARIOL-CAMARGO, R.L., SOUZA, A.A., MACHADO, M.A. In planta

multiplication and graft transmission of ‘Candidatus Liberibacter asiaticus’

revealed by real-time PCR. European J Plant Pathol 126: 53-60, 2010.

COLLETA-FILHO, H.D., TARGON, M.L.P.N., TAKITA, M.A., DE NEGRI, J.D.,

POMPEU JR., J., CARVALHO, A.S., MACHADO, M.A. First report of the causal

agent of huanglongbing (“Candidatus Liberibacter asiaticus”) in Brazil. Plant Dis

88:1382, 2004.

CINTRA, F.L.D., LIBARDI, P.L., SAAD, A.M. Balanço hídrico nosolo paraporta-

enxertos de citros em ecossistema de tabuleiro costeiro. Revista Brasileira de

Engenharia Agrícola e Ambiental4:23-28, 2000.

COLETTA-FILHO, H.D., TARGON, M.L.P.N., TAKITA, M.A., DE NEGRI, J.D.,

POMPEU JR., J., CARVALHO, S.A., MACHADO, M.A. First report of the causal

agent of huanglongbing (“Candidatus Liberibacter asiaticus”) in Brazil. Plant Dis

88: 1382, 2004.

COSTA, M.G.C., OLIVEIRA, M.L.P., LANI, E.R.G., OTONI, W.C.

Transformação genética de citros. In: A.C. Torres; A.N. Dusi; M.D.M. dos

Santos. (Eds.). Transformação genética de plantas via Agrobacterium: teoria e

prática. 1 ed. Brasília: Embrapa Hortaliças1:93-118, 2007.

DOS SANTOS, T.B., BUDZINSKI, I.G., MARUR, C.J., PETKOWICZ, C.L.,

PEREIRA, L.F., VIEIRA, L.G. Expression of three galactinol synthaseisoforms

in Coffea arabica L. and accumulation of raffinose and stachyose in response to

abiotic stresses. Plant Physiol Biochem 49:441-448, 2011.

Page 32: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

19

DANIELSON, J.A.H., JOHANSON, U. Unexpected complexity of the aquaporin

gene family in the moss Physcomitrella patens. BMC Plant Biol8:45, 2008.

DOWNIE, B., GURUSINGHE, S., DAHAL, P., THACKER, R.R., SNYDER, J.C.,

NONOGAKI, H., YIM, K., FUKANAGA, K., ALVARADO, V., BRADFORD, K.J.

Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-

regulated before maturation desiccation and again after imbibition whenever

radicle protrusion is prevented. Plant Physiol 131: 1347–1359, 2003.

DYNOWSKI, M., SCHAAF, G., LOQUE, D., MORAN, O., LUDEWIG, U. Plant

plasma membrane water channels conduct the signaling molecule H2O2.

Biochem J 414: 53-61, 2008.

FAO. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED

NATIONS STATISTICS.http://faostat.fao.org/.

FOUQUET, R., LEON, C., OLLAT, N., BARRIEU, F. Identification of grapevine

aquaporins and expression analysis in developing berries. Plant Cell Rep 27:

1541–1550, 2008.

GASPAROTO, M.C.G. Epidemiologia comparativa entre ‘Candidatus

Liberibacter asiaticus’ e ‘Candidatus Liberibacter americanus’ em ambiente

controlado. 109 f. Tese (Doutorado em Fitopatologia) – Escola Superior de

Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, 2010.

GARCIA-SANCHEZ, F., SYVERTSEN, J.P., GIMENO,V., BOTIA, P., PEREZ-

PEREZ, J.G.Responses to flooding and drought stress by two citrus rootstock

seedlings with different water-use efficiency. Physiol Plantarum 130:532-542,

2007.

GARNIER M., BOVÉ J.M. Transmission of the organism associated with citrus

greening disease from sweet orange to periwinkle by dodder. Phytopathol73:

1358-1363, 1983.

GARNIER, M., DANEL, N., BOVÉ, J.M. Etiology of citrus greening disease.

Annales de Microbiologie153A:169-179, 1984.

GERBEAU, P., GUCLU, J., RIPOCHE, P., MAUREL, C.Aquaporin Nt-TIPa can

account for the high permeability of tobacco cell vacuolar membrane to small

neutral solutes. Plant J 18 (6): 577–587, 1999.

GIMENO, J., GADEA, J., FORMENT, J., PÉREZ-VALLE, J., SANTIAGO, J.,

MARTÍNEZ-GODOY, M.A. et al. Shared and novel molecular responses of

mandarin to drought. Plant Mol Biol70:403–20, 2009.

Page 33: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

20

GOTTWALD, T.R., DA GRAÇA, J.V., BASSANEZI, R.B.Citrus Huanglongbing:

The pathogen and its impact. Plant Health Progress doi:10.1094/PHP-2007-

0906-01-RV. Annu Rev Phytopathol,2007.

GUPTA, A.B., SANKARARAMAKRISHNAN, R. Genome-wide analysis of major

intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP

subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9: 134,

2009.

GUSTAVSSON, S., LEBRUN, A.S., NORDÉN, K., CHAMONT, F., JOHANSON,

U. A novel plant major intrinsic protein in Physcomitrella patens most similar to

bacterial glycerol channels. Plant Physiol 139: 287–295, 2005.

HALBERT, S.E., MANJUNATH, K.L. Asian citrus psyllids (Sternorrhycha:

Psyllidae) and greening disease of citrus: a literature review and assessment of

risk in Florida. Florida Entomologist87: 330-353, 2004.

HANDLEY, L.W., PHARR, D.M., MCFEETERS, R.F. Carbohydrate changes

during maturation of cucumber fruit. Plant Physiol 72:498–502, 1983.

HARITATOS, E., KELLER, F., TURGEON, R. Raffinose

oligosaccharideconcentrations measured in individual cell and tissue types in

Cucumis melo L.leaves: implications for phloem loading. Planta, 198: 614–622,

1996.

HONG-BO, S., ZONG-SUO, L., MING-AN, S. LEA proteins in higher plants:

Structure, function, gene expression and regulation. Colloids and Surf B

Biointerfaces 45:131-135, 2005.

HUNG, T.H., HUNG, S.C., CHEN, C.N., HSU, M.H., SU, H.J. Detection by PCR

of Candidatus Liberibacter asiaticus, the bacterium causing citrus

huanglongbing in vector psyllids: application to the study of vector–pathogen

relationships. Plant Pathol53: 96–102, 2004.

HUNG, T.H., WU, M.L., SU, H.J. Identification of Chinese box orange (Severinia

buxifolia) as an alternative host of the bacterium causing citrus Huanglongbing.

European J Plant Pathol107: 183-189, 2001.

IAC - INSTITUTO AGRONÔMICO DE CAMPINAS. Disponível em:

http://www.iac.br/ (Centro de Citricultura).

IBGE. Instituto Brasileiro de Geografia e Estatística. Disponível em:

http://www.sidra.ibge.gov.br

Page 34: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

21

JAGOUEIX, S., BOVÉ, J.M., GARNIER, M. The phloem-limited bacterium of

greening disease of citrus is a member of a subdivision of the proteobacteria.

International JSystem Bacteriol44: 397–486, 1994.

JAHN, T.P., MØLLER, A.L.B., ZEUTHEN, T., HOLM, L.M., KLÆRKE, D.A.,

MOHSIN, B., KÜHLBRANDT, W., SCHJOERRING, J.K. Aquaporin homologues

in plants and mammals transport ammonia. FEBS Letters 574: 31-36, 2004.

JANG, J.Y., KIM, D.G., KIM, Y.O., KIM, J.S., KANG, H. An expression analysis

of a gene family encoding plasma membrane aquaporins in response to abiotic

stresses in Arabidopsis thaliana. Plant Mol Biol, 54: 713–725, 2004.

JAVOT, H., MAUREL, C. The role of aquaporins in root water uptake. Ann. Bot.

90:301–313, 2002.

JOHANSSON, I., KARLSSON, M., JOHANSON, U., LARSSON, C.,

KJELLBOM, P.The role of aquaporins in cellular and whole plant water balance.

Acta Biochim Biophys 1465: 324-342, 2000.

JOHANSON, U., KARLSSON, M., JOHANSSON, I., GUSTAVSSON, S.,

SJÖVALL, S., FRAYSSE, L., WEIG, A. R., KJELLBOM, P. The complete set of

genes encoding major intrinsic proteins in Arabidopsis provides a framework for

a new nomenclature for major intrinsic proteins in plants. Plant Physiol126:

1358-1369, 2001.

KALDENHOFF, R., FISCHER, M. Functional aquaporin diversity in plants.

Biochim. Biophys. Acta (BBA)—Biomembr. 1758 (8): 1134–1141, 2006.

KAPLAN, F., KOPKA, J., HASKELL, D.W., ZHAO, W., SCHILLER, K.C.,

GATZKE, N, SUNG, D.Y., GUY, C.L. Exploring the temperature stress

metabolome of Arabidopsis. Plant Physiol 136: 4159–4168, 2004.

KIM, M.S., CHO, S.M., KANG, E.Y., IM, Y.J., HWANGBO, H., KIM, Y.C., RYU,

C.M., YANG, K.Y., CHUNG, G.C., CHO, B.H. Galactinol is a signaling

component of the induced systemic resistance caused by Pseudomonas

chlororaphis O6 root colonization. Mol Plant Microbe Interact 12:1643-53, 2008.

KLAMKOWSKI, K., TREDER, W. Response to drought stress of three

strawberry cultivars grown under greenhouse conditions. J Fruit Ornam Plant

Res 16: 179-188, 2008.

KLEBL, F., WOLF, M., SAUER, N. A defect in the yeast plasma membrane urea

transporter Dur3p is complemented by CpNIP1, a Nod26-like protein from

Page 35: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

22

zucchini (Cucurbita pepo L.), and by Arabidopsis thaliana delta-TIP or gamma-

TIP. FEBS Lett 547 (1–3): 69–74, 2003.

KNIGHT, C.A., VOGEL, H., KROYMANN, J., SHUMATE, A., WITSENBOER,

H., MITCHELL-OLDS, T. Expression profiling and local adaptation of Boechera

holboellii populations for water use efficiency across a naturally occurring water

stress gradient. Mol Ecol 15: 1229–1237, 2006.

KUO, T.M., VANMIDDLESWORTH, J.F., WOLF, W.J. Content of

raffinoseoligosaccharides and sucrose in various plant seeds. J AgriculFood

Chem 36: 32-36, 1988.

LEE, C.Y., SHALLENBERGER, R.S., VITTUM, M.T. Free sugars in fruits

andVegetables. New York Food Life Science Bulletin 1:1-12, 1970.

LIN, K.H. Observations on yellow shoot of citrus. Acta Phytopathol Sin 2: 1-11,

1956.

LLAUGER, R., LUIS, M., COLLAZO, C., TEIXEIRA, D.C., MARTINS, E.C.,

PENA, I., LÓPEZ, D., BATISTA, L., PRIETO, D., RIANO, R., BORROTO, A.,

CUETO, J., AYRES, J., BOVÉ, J.M.PCR detection of Candidatus Liberibacter

asiaticus associated with Citrus Huanglongbing in Cuba. Tropical Plant Pathol

33: S93, 2008.

LOQUE, D., LUDEWIG, U., YUAN, L., VON WIRE´n, N. Tonoplast Intrinsic

Proteins AtTIP2;1 and AtTIP2;3 Facilitate NH3 Transport into the Vacuole1.

Plant Physiol137: 671–680, 2005.

LOPES, S.A., FRARE, G.F., CAMARGO, L.E.A., WULFF, N.A., TEIXEIRA,

D.C., BASSANEZI, R.B., BEATTIE, G.A.C., AYRES, A.J. Liberibacters

associated with orange jasmine in Brazil: incidence in urban areas and

relatedness to citrus liberibacters. Plant Pathol59: 1044-1053, 2010.

LOPES, S.A., FRARE, G.F. Graft transmission and cultivar reaction of citrus to

‘Candidatus Liberibacter americanus’. Plant Dis92: 21–24, 2008.

LOPES, S.A., FRARE, G.F., YAMAMOTO, P.T., AYRES, A.J., BARBOSA, J.C.

Ineffectiveness of pruning to control citrus huanglongb ing caused by

Candidatus Liberibacter americanus. European J Plant Pathol119: 463-468,

2007.

LOWELL, C.A., KUO, T.M. Oligosaccharide metabolism and accumulation

indeveloping soybean seeds. Crop Science 29: 459–465, 1989.

Page 36: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

23

LU, Z., NEUMANN, P.M. Water stress inhibits hydraulic conductance and leaf

growth in rice seedlings but not the transport via mercury-sensitive water

channels in the root, Plant Physiol 120 (1): 143–151, 1999.

MAGNI, F., SARTO, C., TICOZZI, D., SOLDI, M., BOSSO, N., MOCARELLI, P.,

KIENLE, M.G. Proteomic knowledge of human aquaporins. Proteomics 6:

5637–5649, 2006.

MARTRE, P., MORILLON, R., BARRIEU, F., NORTH, G.B., NOBEL, P.S.,

CHRISPEELS, M.J. Plasma membrane aquaporins play a significant role during

recovery from water deficit. Plant Physiol 130:2101-2110, 2002.

LUIS, M., COLLAZO, C., LLAUGER, R., BLANCO, E., PEÑA, I., LÓPEZ, D.,

GONZÁLEZ, C., CASÍN, J.C., BATISTA, L., KITAJIMA, E., et al. Occurrence of

citrus huanglongbing in Cuba and association of the disease with Candidatus

Liberibacter asiaticus. J Plant Pathol 91(3):709-712, 2009.

LUU, D.T., MAUREL, C. Aquaporins in a challenging environment: molecular

gears for adjusting plant water status. Plant Cell Environ 28: 85–96, 2005.

MAPA. Ministério da Agricultura (2015) Citros. Disponível (online)

http://www.agricultura. gov.br/ vegetal/ culturas/citrus.

MATTOS JUNIOR, D., NEGRI, J.D., PIO, R.M., POMPEU JUNIOR, J. (Ed.).

Citros. Campinas: IAC; FUNDAG, 929 p., 2005.

MATOS, L., HILF, M.E., CAMEJO, J. First Report of ‘Candidatus Liberibacter

asiaticus’ Associated with Citrus Huanglongbing in the Dominican Republic.

Plant Disease 93(6):668, 2009.

MAUREL, C. Aquaporins and water permeability of plant membranes, Annu.

Rev. Plant Physiol. Plant Mol Biol 48: 399–420, 1997.

MAUREL, C., CHRISPEELS, M.J. Aquaporins, a molecular entry into plant

water relations. Plant Physiol 125:135–138, 2001.

MAUREL, C., JAVOT, H., LAUVERGEAT, V., GERBEAU, P., TOURNAIRE, C.,

et al. Molecular physiology of aquaporins in plants. Int Rev Cytol215:105–48,

2002.

MAUREL, C. Plant aquaporins: novel functions and regulation properties, FEBS

Lett. 581 (12): 2227–2236, 2007.

MAUREL,C., REIZER,J., SCHROEDER, J.I., CHRISPEELS,M.J. The vacuolar

membrane protein y-TIP creates water specific channels in Xenopus oocytes.

EMBO J 12: 2241-2247, 1993.

Page 37: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

24

MAUREL, C., VERDOUCQ, L., LUU, D.T., SANTONI, V. Plant aquaporins:

membrane channels with multiple integrated functions. Annu Rev Plant Biol

59:595-624, 2008.

MCCLEAN, A.P.D., OBERHOLZER, P.C.J.Citrus psyllid, a vector of the

greening disease of sweet orange. South African J Agri Scien8:297-298, 1965.

MIZUTANI, M., WATANABE, S., NAKAGAWA, T., MAESHIMA, M. Aquaporin

NIP2;1 is mainly localized to the ER membrane and shows root-specific

accumulation in Arabidopsis thaliana. Plant Cell Physiol 47:1420–26, 2006.

MOORE, G.A. Oranges and lemons: clues to the taxonomy of Citrus from

molecular markers. Trends in Genetics17: 536-540. 2001.

MURRAY, R.G.E, SCHLEIFER, K.H. Taxonomics notes: a proposal for

recording the properties of putative taxa of prokaryotes. Int J System

Bac44:174-176, 1994.

NEVES, D.M., COELHO FILHO, M.A., BELLETE, B.S., SILVA, M.F.G.F.,

SOUZA, D.T., DOS S. SOARES FILHO, W., COSTA, M.G.C., Gesteira A.S.

Comparative study of putative 9-cis-epoxycarotenoid dioxygenase and abscisic

acid accumulation in the responses of Sunki mandarin and Rangpur lime to

water deficit. Mol Biol Rep 40:5339–5349, 2013.

NICOLOSI, E. Origin and Taxonomy. In: KHAN, I. A. Citrus Genetics, Breeding

and Biotechnology. CAB International, 2007.

NISHIZAWA, A., YABUTA, Y., SHIGEOKA, S. Galactinol and raffinose

constitute a novel function to protect plants from oxidative damage. Plant

Physiol 147:1251-1263, 2008.

OLIVEIRA, T.M., CIDADE, L.C., GESTEIRA, A.S., COELHO FILHO, M.A.,

SOARES FILHO, W.S., COSTA, M.G.C. Analysis of the NAC transcription

factor gene family in citrus reveals a novel member involved in multiple abiotic

stress responses. Tree Genet Genomes 7:1123–34, 2011.

PANDE, Y.D. Biology of citrus psylla, Diaphorina citri Kuw. (Hemiptera:

Psyllidae). Israel JEntomol6:307–311, 1971.

PANIKULANGARA, T.J., EGGERS-SCHUMACHER, G., WUNDERLICH,

M.,STRANSKY, H., SCHO¨FFL, F. Galactinol synthase1: a novel heat shock

factor

target gene responsible for heat-induced synthesis of raffinose

familyoligosaccharides in Arabidopsis. Plant Physiol136: 3148–3158, 2004.

Page 38: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

25

PANTOJA, M.L., CORDERO, C.C., RIVERON, R.L., PEÑA BARZAGA, L.,

HERNANDEZ, D.L., BLANCO, E., CASI, J.C. et al. Huanglongbing in Cuban

Citriculture. Book of Program and Abstracts, 11th International Citrus Congress,

Wuhan, ChinaAbstract # 84: 50-51, 2008.

PETERBAUER, T., RICHTER, A. Biochemistry and physiology of raffinose

family oligosaccharides and galactosyl cyclitols in seeds. Seed Science

Research 11: 185-197, 2001.

PETERS, S., MUNDREE, S. G., THOMSON, J. A., FARRANT, J. M., KELLER,

F. Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker):

both sucrose and raffinose family oligosaccharides (RFOs) accumulate in

leaves in response to water deficit. J Exp Bot 58: 8: 1947– 1956, 2007.

PIO, R.M., FIGUEIREDO, J.O., STUCHI, E.S., CARDOSO, S.A.B. Variedades

copas. In: MATTOS JUNIOR, D.; NEGRI, J. D.; PIO, R. M.; POMPEU JUNIOR,

J. (Ed.). Citros. Campinas: Instituo Agronômico; Fundag, Cap. 3: 39-60, 2005.

POMPEU JÚNIOR, J. Porta-Enxertos. In: Mattos JÚNIOR, D. de, NEGRI, J.D.

de, PIO, R.M., POMPEU JÚNIOR, J. (Eds.). Citros. Campinas: Instituto

Agronômico e FUNDAG, p. 61-104, 2005.

POMPEU JUNIOR, J. Porta-enxertos. In: RODRIGUEZ, O., VIÉGAS, F.C.P.,

POMPEU JUNIOR, P., AMARO, A.A. (Eds.). Citricultura brasileira. 2. ed.

Campinas: Fundação Cargill, 1: 265-280, 1991.

REINKING, O.A.Diseases of economic plants in South China. Philippine

Agricalture, 109-135, 1919.

ROBINSON, D.G., SIEBER, H., KAMMERLOHER, W., SCHAFFNER, A.R.

PIP1 aquaporins are concentrated in plasmalemmasomes of Arabidopsis

thaliana mesophyll. Plant Physiol 111:645–49, 1996.

RODRIGO, M-J., ALQUEZAR, B., ZACARIAS, L. Cloning and characterization

of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during

fruit maturation and under stress conditions, from Orange (Citrus sinensis L.

Osbeck). JExp Bot 57 (3): 633-643, 2006.

RODRÍGUEZ-GAMIR, J., ANCILLO, G., APARICIO, F., BORDAS, M., PRIMO-

MILLO, E., FORNER-GINER, M.A. Water-deficit tolerance in citrus is mediated

by the down regulation of PIP gene expression in the roots. Plant Soil347: 91–

104, 2011.

Page 39: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

26

RODRÍGUEZ-GAMIR, J., ANCILLO, G., LEGAZ, F., PRIMO-MILLO, E.,

FORNER-GINER, M.A. Influence of salinity on PIP gene expression in citrus

roots and its relationship with root hydraulic conductance, transpiration and

chloride exclusion from leaves. Environ Exp Bot78: 163–166, 2012.

RODRÍGUEZ-GAMIR, J., INTRIGLIOLO, D.S., PRIMO-MILLO, E., FORNER-

GINER, M.A.Relationships between xylem anatomy, root hydraulic conductivity,

leaf/root ratio and transpiration in citrus trees on different rootstocks. Physiol

Plant 139: 159–169, 2010.

SAKURAI, J., ISHIKAWA, F., YAMAGUCHI, T., UEMURA, M., MAESHIMA, M.

Identification of 33 rice aquaporin genes and analyses of their expression and

function. Plant Cell Physiol 45: 1568–1577, 2005.

SANTOS, C.H., GRASSI FILHO, H., RODRIGUES, J.D., PINHO, S.Z. Níveis de

alumínio e acúmulo de macronutrientes em porta-enxertos cítricos em cultivo

hidropônico. Sciencia Agrícola56:1165-1175, 1999.

SARAVITZ, D.M., PHARR, D.M., CARTER, J.R.T.E. Galactinol synthase

activity and soluble sugars in developing seeds of four soybean genotypes.

Plant Physiol 83: 185–9, 1987.

SCHNEIDER, T., KELLER, F. Raffinose in chloroplasts is synthesized in the

cytosol and transported across the chloroplast envelope. Plant Cell Physiol 50:

2174–2182, 2009.

SECHLER, A., SCHUENZEL, E.L., COOKE, P., DONNUA, S., THAVEECHAI,

N., POSTNIKOVA, E., STONE, A. L. et al. Cultivation of ‘’Candidatus

Liberibacter asiaticus’’, “Ca. L. africanus’’, and ‘’Ca. L. americanus” associated

with huanglongbing. Phytopathol99: 480-486, 2009.

SIEFRITZ, F., TYREE, M.T., LOVISOLO, C., SCHUBERT, A., KALDENHOFF,

R. PIP1 plasma menbrane aquaporins in tabacco: From cellular effects to

function in plants. Plant Cell 14: 869-876, 2002.

SIMÃO, S. Tratado de fruticultura. Piracicaba: FEALQ, 760p.1998.

SWINGLE, W.T., REECE, R.C. Thes botany of Citrus and its wild relatives. In:

REUTHER, W., BATCHELLOR, L.D., WEBER, H.J. (Ed.). The citrus industry.

Berkeley: University of California, p. 190-430, 1967.

TAIZ, L., ZEIGER, E. Plant Physioly, 3th Edition. Ad Sinauer (Ed.), Sinauer Ass

Inc Publishers, Sunderland (MA), 2003.

Page 40: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

27

TAJI, T., OHSUMI, C., IUCHI, S., SEKI, M., KASUGA, M., KOBAYASHI,

M.,YAMAGUCHI-SHINOZAKI, K., SHINOZAKI K. Important roles of drought-

and coldinducible genes for galactinol synthase in stress tolerance in

Arabidopsis thaliana. Plant Journal 29: 417–426, 2002.

TALLMAN, G. Are diurnal patterns of stomatal movement the result of

alternating metabolism of endogenous guard cell ABA and accumulation of ABA

delivered to the apoplast around guard cells by transpiration. J Exp Bot55 (405):

1963-1976, 2004.

TANAKA, T. Fundamental discussion of Citrus classification. Study in

Citrologia14:1-6, 1977.

TEIXEIRA, D.C., DANET, J.L., EVEILLARD, S., MARTINS, E.C., JESUS Jr.,

W.C., YAMAMOTO, P.T. et al. Citrus hanglongbing in São Paulo State, Brazil:

PCR detection of the ‘Candidatus’ Liberibacter species associated with the

disease. Molecular and Cellular Probes 19:173-179, 2005.

TYERMAN, S.D., NIEMIETZ, C.M., BRAMLEY, H. Plant aquaporins:

multifunctional water and solute channels with expanding roles. Plant Cell

Environ 25: 173–194, 2002.

YAMAMOTO, P.T., FELIPPE, M.R., GARBIM, L.F., COELHO, J.H.C.,

XIMENES, N.L., MARTINS, E.C. Diaphorina citri (Kuwayama) (Hemiptera:

Psyllidae): vector of the bacterium Candidatus Liberibacter americanus. In:

HUANGLONGBING - GREENING INTERNATIONAL WORKSHOP, 2006,

Ribeirão Preto. Proceedings. Araraquara: Fundecitrus, 2006. p.96.

VAN DE MERWE, A.J., ANDERSON, F.G.Chromium and manganese toxicity.

Is it important in transvaal citrus greening? Farming in South Africa 12:439-440,

1937.

WANG, Z., ZHU, Y., WANG, L., LIU, X., LIU, Y., PHILLIPS, J., DENG, X.A

WRKY transcription factor participates in dehydration tolerance in Boea

hygrometrica by binding to the W-box elements of the galactinol synthase

(BhGolS1) promoter. Planta 230:1155-1166, 2009.

WU, B., BEITZ, E. Aquaporins with selectivity for unconventional permeants.

Cellular and Molecular Life Sciences, 64: 2413–2421, 2007.

WU, G.A., PROCHNIK, S., JENKINS, J., SALSE, J., HELLSTEN, U. et al.

Sequencing of diverse mandarin, pummelo and orange genomes reveals

Page 41: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

28

complex history of admixture during citrus domestication. Nat Biotechnol 32:

656–662, 2014.

XU, C.F., XIA, Y.H., LI, K.B., E, K.C. Further study of the transmission of citrus

huanglongbing by a psyllid, Diaphorina citri Kuwayama. In: CONFERENCE OF

THE INTERNATIONAL ORGANIZATION OF CITRUS VIROLOGISTS, 10.,

1986, Valencia. Proceedings. Riverside: University of California, 1988.

ZUTHER, E., BUCHEL, K., HUNDERTMARK, M., STITT, M., HINCHA,

D.K.,HEYER, A.G. The role of raffinose in the cold acclimation response of

Arabidopsis thaliana. FEBS Letters 576: 169–173, 2004.

Page 42: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

29

CAPÍTULO 1

GENOME-WIDE CHARACTERIZATION AND

EXPRESSION ANALYSIS OF MAJOR INTRINSIC

PROTEINS DURING ABIOTIC AND BIOTIC STRESSES

IN SWEET ORANGE (Citrus sinensis L. Osb.)

Artigo publicado: PLoS ONE

Citation: de Paula Santos Martins C, Pedrosa AM, Du D, Gonçalves LP, Yu Q,

Gmitter FG Jr, et al. (2015) Genome-Wide Characterization and Expression

Analysis of Major Intrinsic Proteins during Abiotic and Biotic Stresses in Sweet

Orange (Citrus sinensis L. Osb.). PLoS ONE 10(9): e0138786.

doi:10.1371/journal.pone.0138786

Page 43: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

30

ABSTRACT

The family of aquaporins (AQPs), or major intrinsic proteins (MIPs), includes

integral membrane proteins that function as transmembrane channels for water

and other small molecules of physiological significance. MIPs are classified into

five subfamilies in higher plants, including plasma membrane (PIPs), tonoplast

(TIPs), NOD26-like (NIPs), small basic (SIPs) and unclassified X (XIPs) intrinsic

proteins. This study reports a genome-wide survey of MIP encoding genes in

sweet orange (Citrus sinensis L. Osb.), the most widely cultivated Citrus spp. A

total of 34 different genes encoding C. sinensis MIPs (CsMIPs) were identified

and assigned into five subfamilies (CsPIPs, CsTIPs, CsNIPs, CsSIPs and

CsXIPs) based on sequence analysis and also on their phylogenetic

relationships with clearly classified MIPs of Arabidopsis thaliana. Analysis of key

amino acid residues allowed the assessment of the substrate specificity of each

CsMIP. Gene structure analysis revealed that the CsMIPs possess an exon-

intron organization that is highly conserved within each subfamily. CsMIP loci

were precisely mapped on every sweet orange chromosome, indicating a wide

distribution of the gene family in the sweet orange genome. Investigation of their

expression patterns in different tissues and upon drought and salt stress

treatments, as well as with ‘Candidatus Liberibacter asiaticus’ infection,

revealed a tissue-specific and coordinated regulation of the

different CsMIP isoforms, consistent with the organization of the stress-

responsive cis-acting regulatory elements observed in their promoter regions. A

special role in regulating the flow of water and nutrients is proposed

for CsTIPs and CsXIPs during drought stress, and for most CsMIPs during salt

stress and the development of HLB disease. These results provide a valuable

reference for further exploration of the CsMIPs functions and applications to the

genetic improvement of both abiotic and biotic stress tolerance in citrus.

Page 44: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

31

1 INTRODUCTION

Aquaporins (AQPs) are integral membrane proteins that assist the rapid

movement of water as well as other low molecular weight molecules across

cellular membranes [1-3]. AQPs belong to the ancient family of major intrinsic

proteins (MIPs) found in microorganisms, plants and animals. While a small

number of different AQPs have been identified in E. coli (2), S. cerevisiae (9), C.

elegans (11) and mammals (13) [4], a surprisingly large number of MIP

homologues have been found in plants; for example, 35 AQPs were found in

Arabidopsis [5], 36 in Zea mays [6], 33 in Oryza sativa [7], 28 in Vitis vinifera [8],

55 in Populus trichocarpa [9], 71 in Gossypium hirsutum [10], 47 in Solanum

lycopersicum [11] and 66 in Glycine max [12]. These observations highlight a

major role for plant MIPs as key regulators of the intricate flows of water and

solutes required for growth and adaptive responses to the ever-changing

environment.

Plant MIPs were originally categorized into four subfamilies on the basis

of sequence homologies and subcellular localization: plasma membrane (PIP),

tonoplast (TIP), nodulin-like (NIP) and small basic (SIP) intrinsic proteins [2,13].

More recently, studies in the moss Physcomitrella patens revealed the presence

of novel AQP isoforms in addition to the four conserved plant AQP subfamilies:

a homologue of the Escherichia coli intrinsic protein GlpF (GIPs), intrinsic hybrid

proteins (HIPs) and unclassified X intrinsic proteins (XIPs) [9,13-17]. XIP

homologues have also been identified in some higher plants, such as Solanum

lycopersicum, Populus trichocarpa and Glycine max [9,11,12,15]. These

findings suggest that the family of plant MIPs is larger and much more complex

than previously anticipated and, hence, may play critical roles in a wide range of

biological processes that go far beyond the current knowledge.

AQP-mediated water transport in plants has been implicated to play a

central regulatory step in diverse biological processes, including cell elongation,

seed germination and osmoregulation [18]. In addition, AQPs facilitate the

transport of small uncharged molecules of physiological significance like

glycerol, urea, boric acid, silicic acid, hydrogen peroxide (H2O2), ammonia (NH3)

and carbon dioxide (CO2) through the plant cell membranes [1,2] and also

Page 45: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

32

regulate phloem sap loading and unloading, stomatal and leaf movement, and

cytoplasmic homeostasis [1,2,13,19]. Therefore, it is not surprising that their

expression and biological activities have been shown to be developmentally and

differentially regulated in a cell-specific manner, via phytohormones such as

abscisic acid (ABA), gibberellins and possibly brassinosteroids, and by

environmental signals such as light, water stress, nematode infection, low

temperature, and salinity [4]. However, a general expression pattern among the

distinct MIP isoforms cannot be distinguished, as they are either up- or

downregulated depending on the stimulus and/or the cell-type studied [4,19,20].

This difference in transcriptional regulation suggests that each MIP isoform may

play distinct roles in plant growth, development and stress response [4].

As a major horticultural crop, the cultivated Citrus spp. face constant

biotic and abiotic constraints in the main regions of production, including

drought, salinity, extreme temperatures and serious diseases like

Huanglongbing (HLB, or citrus greening), which are predicted to increase in

intensity, frequency, and geographic extent as a consequence of global climate

change. Despite the highlighted importance of AQPs, there are only a few

studies to date on citrus MIPs and their predicted role in the transport of water

and solutes required for plant growth, development and adaptive responses to

the environment. The expression of two MIP genes, PIP1 and PIP2, has been

investigated in roots of Poncirus trifoliata (L.) Raf., Cleopatra mandarin (C.

reshni Hort exTan.) and one of their hybrid, subjected to moderate water deficit

[21], and in roots of P. trifoliata, Cleopatra mandarin and Carrizo citrange (C.

sinensis [L.] Osb.×P. trifoliata [L.] Raf.), subjected to salt treatment [22]. PIP1

and PIP2 gene expression differences were correlated with alterations in root

hydraulic conductance (Kr) and chloride (Cl-) exclusion from leaves and, hence,

plant tolerance to water and salt stresses, respectively. With the recent

completion and publication of the draft genome sequences of sweet orange [23-

25], it is now possible to identify and characterize the complete repertoire of

MIPs in citrus, as well as to carry out comparative genome analysis in order to

understand their evolutionary history. Therefore, the objective of the present

study was to identify sweet orange MIP genes through a genome-wide analysis

and to characterize their sequences, evolutionary relationships, putative

functions and expression patterns in various tissues and in response to abiotic

Page 46: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

33

stresses and ‘Candidatus Liberibacterasiaticus’ infection. This is the first

comprehensive study of the MIP gene family in sweet orange, providing

valuable information for further exploration of the functions of this important

gene family in citrus.

2 MATERIALS AND METHODS

2.1 Plant materials and stress treatments

Two-year-old sweet orange plants grafted on Rangpur lime

(C. limonia Osbeck), a rootstock highly resistant to drought, were used in the

drought stress experiment. Plants were first pruned and acclimatized to

greenhouse conditions (25±4°C, 16 h of light and relative humidity oscillating

between 80 and 95%) during 90 days to obtain adequate root development and

uniform leaf flushes. During acclimatization, plants were grown in plastic pots of

45-L, containing a mixture of soil and sand (ratio 3:1) and micronutrient mix FTE

(50g per pot), irrigated with tap water twice a week, and fertilized weekly with 1

liter of the following nutrient solution: 1.0g l-1 Ca(NO3)2, 0.4g l-1 KNO3, 0.6g l-

1 MgSO4 and 0.4g l-1 NH4H2P04 (MAP). Thereafter, the pots were closed with

aluminum foil to prevent water loss by evaporation, and a set of 10 plants was

randomized over the experimental area and subjected to the following

treatments: (i) 5 plants in control, in which plants were maintained at leaf

predawn water potential values of -0.2 to -0.4 MPa by daily irrigation and (ii) 5

plants in drought, in which the plants were exposed to a progressive soil water

deficit until their leaves reach predawn water potential values of -1.5 MPa. The

leaf predawn water potential was recorded on the third fully expanded mature

leaf from the apex of each plant, between 2 AM and 4 AM, using a Scholander-

type pressure pump (m670, Pms Instrument Co., Albany, USA).

For salt treatment, sweet orange seeds were germinated in vitro as

described by de Oliveira et al. [26]. Twenty-day-old seedlings of nucellar origin

were selected based on their uniformity, and transferred to MS medium alone

(control) or containing 150 mM NaCl (Merck, Darmstadt, Germany). Each

treatment consisted of 15 nucellar plants (biological replicates). Leaves and

Page 47: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

34

roots were harvested 20 days after the treatments and immediately frozen in

liquid nitrogen and stored at -80°C.

Plants were infected with ‘Candidatus Liberibacter asiaticus’ as described

in Fan et al. [27]. Briefly, two-year-old seedlings of rough lemon (C. jambhiri

Lush.) and sweet orange (C.sinensis L. Osbeck) were graft-inoculated with bud

wood from ‘Ca. L. asiaticus’ infected ‘Carrizo’ citrange trees kept under

greenhouse conditions. For controls, the plants were grafted with bud wood

from healthy Carrizo trees. All these plants were kept in a United States

Department of Agriculture Animal and Plant Health Inspection Service and

Center for Disease Control-approved and secured greenhouse at the University

of Florida, Citrus Research and Education Center, Lake Alfred. Three biological

replicates were produced for each citrus species in each treatment. Quantitative

real-time PCR was performed to confirm the presence of ‘Ca. L. asiaticus’ in the

inoculum source and inoculated plants as described in Li et al. [28]. Four fully

expanded leaves were sampled separately from ‘Ca. L. asiaticus’ inoculated

plants and mock-inoculated plants (used as controls) of each citrus species at

0, 7, 17, and 34 weeks after inoculation (WAI). Leaves were immediately frozen

in liquid nitrogen and stored at -80°C until use. Three biological replicates were

produced for each condition. In total, 12 plants with 48 leaf samples were

collected (2 species x 2 treatments x 3 replicates x 4 time points).

2.2 Identification and classification of CsMIPs

The HMM (Hidden Markov Model) profile of the PFAM

(http://pfam.sanger.ac.uk/) [29] motif PF00230 (major intrinsic protein) was used

as a keyword to search the sweet orange genome sequence database

(http://www.phytozome.org/citrus)[25]. The KEGG Orthology (KO) terms

K09872 (aquaporin PIP), K09873 (aquaporin TIP), K09874 (aquaporin NIP) and

K09875 (aquaporin SIP) were also used as keywords to search the sweet

orange genome sequence at Phytozome. To avoid the deficiencies of the

automatic annotation, the 35 Arabidopsis thaliana MIP protein sequences were

retrieved from TAIR (http://www.arabidopsis.org/), according to previous reports

[5,30], and also used to align the sweet orange genome sequence assembly

available at Phytozome using the TBLASTN tool. After merging the results from

Page 48: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

35

all these strategies, unique entries (with unique locus ID) were identified to

remove the redundancy. The resulting sequences were manually inspected for

the presence of characteristic and functionally important MIP amino acids and

motifs.

The sweet orange MIPs were classified in different isoforms based on

sequence analysis of the multiple alignments and on their phylogenetic

relationship with those clearly classified MIPs of Arabidopsis thaliana, Ricinus

communis and Nicotiana benthamiana, downloaded from the TAIR and NCBI

databases. Multiple sequence alignments of the deduced amino acid

sequences of CsMIPs and those of A. thaliana, R. communis and N.

benthamiana were performed using the default parameters of ClustalW [31].

The dendrogram was generated by the MEGA 6 program [32] using the

Neighbor-Joining (NJ) method [33] and bootstrap analysis (1,000 replications).

2.3Analysis of CsMIP protein properties and conserved amino acid

residues

Information about coding sequence (CDS), full-length sequence and

predicted amino acid sequence was obtained for each sweet orange MIP gene

from the Phytozome database. The GRAVY (grand average of hydropathy),

molecular weight and isoelectric point (pI) of the deduced amino acid

sequences were predicted by the PROTPARAM tool available on the Expert

Protein Analysis System (ExPASy) proteomics server

(www.expasy.ch/tools/protparam.html). The subcellular localization of MIP

proteins was predicted using the WoLF PSORT tool available at

http://www.genscript.com/psort/wolf_psort.html. Careful visual inspection of

amino acid sequence alignments were performed in order to identify the

characteristic MIP amino acids and motifs and the residues in seven key

positions that have been reported to be specific for each functional subgroup

[12,30,34,35].

Page 49: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

36

2.4 Analysis of promoter sequences and chromosomal locations of

CsMIPs

One kb upstream region from the translation start site was extracted from

all the sweet orange MIP genes and subsequently analyzed in the PLACE

database (http://www.dna.affrc.go.jp/PLACE/signalscan.html) to identify the

presence of the stress-responsive cis-acting regulatory elements ABRE (ABA-

responsive element; ACGTG), DRE/CRT (dehydration responsive element/C-

repeat; G/ACCGAC), MYBS (MYB binding site; TAACTG) and LTRE (low-

temperature-responsive element; CCGAC) in their promoters. The physical

locations of CsMIPs were determined by confirming the starting position of all

genes on each chromosome, using BLASTN searching against the local

database of the Citrus sinensis Annotation Project (CAP;

http://citrus.hzau.edu.cn/orange/). MapChart software was used to plot the gene

loci on the sweet orange chromosomes [36].

2.5 Expression analysis of CsMIPs

Total RNA isolation, cDNA synthesis and quantitative real-time RT-PCR

(qPCR) analysis were performed as described previously [26]. qPCR primers

were designed in order to avoid the conserved regions. Primer sequences are

shown in detail in S1 Table. Glyceraldehyde-3-phosphate dehydrogenase C2

(GAPC2) was used as an internal reference gene to normalize expression

among the different samples [37]. Data were obtained from a pool of three

biological replicates that were individually validated.

RNA-Seq data were downloaded from CAP [24] and used to analyze the

expression patterns of CsMIPs in different tissues, namely callus (C), flower

(Fl), leaf (L), fruit (Fr), and mixed tissues from fruit at three developmental

stages (Mix.1, Mix.2, and Mix.3). The heatmap was generated using R 3.1.0

software.

Page 50: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

37

3 Results and Discussion

3.1 MIP encoding genes in the sweet orange genome

Searches in the sweet orange genome sequence database at

Phytozome using annotation information, as well as the 35 protein sequences of

the complete set of A. thaliana MIPs (AtMIPs) as query sequences, resulted in

the identification of 34 different genes encoding C. sinensis MIPs (CsMIPs)

(Table 1). The retrieved sequences were manually inspected for the presence

of characteristic and functionally important MIP domains and motifs, such as the

highly conserved NPA (Asn-Pro-Ala) motifs, and considered to be correct. The

number of MIP genes described in this study is similar to that found in the

genomes of Arabidopsis [5], maize [6], rice [7] and grape [8], but significantly

lower than that identified in the genomes of poplar [9], cotton [10], tomato [11]

and soybean [12]. The absence of recent whole-genome duplication (WGD)

events in the sweet orange genome, as described by Xu et al. [23], could

account for the relatively small size of the MIP family in the citrus genome.

Page 51: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

38

1

Table 1. Genes and encoded MIP proteins in sweet orange. 2

Gene name

Locus

Chromosome location

Group

Kegg Orth

ID

Polypeptide

length

(MW)

pI

GRAVY

Predicted subcellular

localization

CsPIP1;1 orange1.1g018895m chr7:

31,253,722…31,256,103

PIP K09872 349

(37.56kDa)

9.39 0.397 plasma membrane

CsPIP1;2 orange1.1g023021m chr7:

31,247,369…31,248,902

288

(30.67kDa)

7.71 0.414 plasma membrane

CsPIP1;3 orange1.1g023107m chr5:

1,804,896…1,807,677

287

(30.70kDa)

8.97 0.344 plasma membrane

CsPIP1;4 orange1.1g023069m chr6:

9,907,825…9,909,541

287

(30.82kDa)

8.96 0.343 plasma membrane

CsPIP2;1 orange1.1g023108m chr6:

12,833,884…12,835,042

287

(30.67kDa)

8.74 0.376 plasma membrane

CsPIP2;2 orange1.1g022966m chr8:

19,657,287…19,659,497

289

(31.05kDa)

7.62 0.392 plasma membrane

CsPIP2;3 orange1.1g019681m chr7:

26,202,220…26,205,546

337

(36.34KDa)

9.77 0.403 plasma membrane

CsPIP2;4 orange1.1g023370m chr8:

981,841…983,571

283

(30.14kDa)

8.99 0.431 plasma membrane

CsTIP1;1 orange1.1g025548m chrUn:

46,663,407…46,665,011

TIP K09873 251

(26.06kDa)

6.12 0.675 vacuole

CsTIP1;2 orange1.1g025600m chr8:

20,659,157…20,660,437

250

(25.65kDa)

5.32 0.841 cytosol

CsTIP1;3 orange1.1g037978m chr8:

20,659,157…20,660,437

124

(12.92kDa)

4.37 0.734

cytosol

CsTIP1;4 orange1.1g025464m chr7:

29,135,182…29,136,531

252

(26.01kDa)

5,69 0,786 vacuole

CsTIP2;1 orange1.1g025817m chr1:

18,627,617…18,629,472

247

(25.15kDa)

5.59 0.894 vacuole

CsTIP2;2 orange1.1g025865m chr1:

18,627,617…18,629,472

247

(25.10kDa)

5.59 0.902 vacuole

CsTIP2;3 orange1.1g038895m chr5:

5,749,487…5,750,939

206

(20.55kDa)

4.72 0.979 vacuole

CsTIP3;1 orange1.1g025197m chr5:

16,938,542…16,940,192

256

(26.99kDa)

7.07 0.626 cytosol

CsTIP4;1 orange1.1g025864m chr4: 247 6.27 0.825 vacuole

Page 52: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

39

19,032,254…19,033,990 (16.27kDa)

CsTIP5;1 orange1.1g046726m chr9:

14,144,215…14,145,199

161

(16.86kDa)

9.00 0.770 cytosol

CsTIP6;1 orange1.1g042738m chr9:

14,144,215…14,145,199

107

(11.11kDa)

4.54 0.636 secreted

CsNIP1;1 orange1.1g023184m chr2:

2,151,220...2,153,387

NIP K09874 286

(30.45kDa)

8.64 0.434 vacuole

CsNIP2;1 orange1.1g036721m chr6:

18,134,848…18,136,228

223

(23.70kDa)

9.69 0.889 cytosol

CsNIP2;2 orange1.1g040981m chr6:

18,134,848…18,136,228

211

(22.32kDa)

9.39 0.967 cytosol

CsNIP2;3 orange1.1g040755m chr2:

13,464,261…13,465,771

275

(29.39kDa)

8.88 0.628 plasma membrane

CsNIP3;1 orange1.1g023102m chr6:

20,482,599…20,486,038

287

(30.30kDa)

8.40 0.387 plasma membrane

CsNIP4;1 orange1.1g046511m chr3:

23,770,831...23,774,009

282

(29.28kDa)

8.84 0.372 vacuole

CsNIP5;1 orange1.1g035030m chr1:

13,680,675…13,682,992

75

(7.75kDa)

8.98 0.291 chloroplast

CsNIP5;2 orange1.1g027840m chr1:

13,678,241…13,681,090

218

(22.51kDa)

7.75 0.462 plasma membrane

CsNIP6;1 orange1.1g039196m chr9:

3,798,017…3,800,780

288

(30.20kDa)

7.53 0.718 plasma membrane

CsSIP1;1 orange1.1g026039m chr5:

28,968,880…28,972,401

SIP K09875 244

(25.92kDa)

9.35 0.727 plasma membrane

CsSIP1;2 orange1.1g026082m chr3:

1,234,876…1,236,556

244

(26.17kDa)

9.83 0.749 plasma membrane

CsSIP2;1 orange1.1g026600m chr6:

17,078,102…17,081,323

236

(25.57kDa)

9.70 0.600 chloroplast

CsXIP1;1 orange1.1g036381m chr8:

7,139,938…7,141,114

XIP - 235

(25.09kDa)

8.70 0.821 plasma membrane

CsXIP1;2 orange1.1g040654m chr8:

7,131,064…7,132,799

302

(32.68kDa)

8.74 0.573 plasma membrane

CsXIP2;1 orange1.1g045670m chr8:

7,128,184...7,129,448

319

(34.58kDa)

8.32 0.681 plasma membrane

3

Page 53: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

40

The CsMIPs were classified in five different subfamilies, PIPs, TIPs, NIPs, SIPs

and XIPs, based on analysis of the amino acid residues located in seven key

positions (P1 to P7) that were previously proposed [12,34,35] to discriminate

the different subfamilies (S2 Table), as well as on their phylogenetic

relationships with the well classified MIPs of A. thaliana and XIPs of R.

communis and N. benthamiana (S1 Fig). Our analysis revealed the presence of

8 PIPs, 11 TIPs, 9 NIPs, 3 SIPs and 3 XIPs in the sweet orange genome (Table

1). The CsMIPs were named according to the nomenclature proposed in

classification of the MIPs of A. thaliana. This nomenclature was based on

phylogenetic analyses and where the names in a systematic way reflect distinct

clades that are evolutionarily stable [5]. PIPs, TIPs, NIPs and SIPs from sweet

orange grouped with their respective Arabidopsis counterparts, indicating the

large extent of conservation between the sweet orange and ArabidopsisMIP

gene families (S1 Fig). The only exception was CsTIP6;1, which was found to

encode a N- and C-terminally truncated TIP protein compared to the rest of the

subfamily.

To examine whether the number of MIP genes found in the diploid sweet

orange is comparable to that of the dihaploid sweet orange and haploid

Clementine mandarin, we also performed homology searches against the

dihaploid sweet orange draft genome available at the Citrus sinensis Annotation

Project (CAP) and the reference haploid Clementine mandarin (C.clementina)

genome available at Phytozome (S3 Table). Although the total number of MIP

genes was roughly similar among the different citrus genomes, significant

differences were observed in the number of members within the subfamilies

(Table 2). BLAST similarity analysis revealed that the dihaploid sweet orange

and haploid Clementine contained two additional PIPisoforms closely related to

the CsPIP2;1 (S3 Table). Clementine also contained one additional PIP isoform

closely related to the CsPIP1;2 and one PIP, TIP and NIP isoform without

homology to any MIP sequence from the diploid sweet orange (S3

Table). CsTIP1;2 andCsTIP1;3, CsTIP2;1 and CsTIP2;2, CsTIP5;1 and CsTIP6;

1, and CsNIP2;1 and CsNIP2;2 exhibited significant hits to the

same MIP isoforms of the dihaploid sweet orange and haploid Clementine (S3

Table). These observed variations in the size of the MIP subfamilies may be a

Page 54: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

41

consequence of the different sequencing depth and assembly quality between

the diploid and dihaploid sweet orange genomes [23,25] and the evolutionary

origin of Clementine, which is a hybrid of Willowleaf mandarin and sweet-

orange [25] and, thereby, it contains more C.reticulata haplotype regions than

found in sweet orange.

Table 2. Comparison of the number of the different MIP family members in

diploid (Phytozome) and dihaploid (CAP) sweet oranges (C. sinensis) and

haploid Clementine (C. clementina).

Subfamily Diploid

C. sinensis

Dihaploid

C. sinensis

C. clementina

PIP 8 10 11

TIP 11 8 9

NIP 9 8 8

SIP 3 3 3

XIP 3 3 2

Total 34 32 33

3.2 CsMIP protein properties and conserved amino acid residues

The CsMIPs encode proteins ranging from 75 (7.7 kDa) to 349 (37.6

kDa) amino acids in length, and pI values ranging from 4.37 to 9.77 (Table 1).

The average protein length of PIPs, TIPs, NIPs, SIPs and XIPs were 300.8

(32.2 kDa), 213.4 (21.1 kDa), 238.3 (25.1 kDa), 241.3 (25.9 kDa) and 285.3

(30.8 kDa) amino acids, respectively. The average pI of PIPs, TIPs, NIPs, SIPs

and XIPs were 8.77, 5.86, 8.68, 9.63, and 8.59, respectively. These data reveal

that CsTIPs are not only smaller, but most of them are also much more acidic

than the other CsMIPs, as reported for Arabidopsis MIPs [38]. The cause of

these large differences in TIPs has been attributed to the smaller amount of

basic residues found at the carboxyl termini of TIPs compared with the other

MIPs [5]. All the CsMIPs had a positive grand average hydropathy (GRAVY)

score (Table 1), suggesting that they are hydrophobic proteins, which is a

necessary character for AQPs [1]. Analysis of the predicted subcellular

localization showed that all CsPIPs and CsXIPs were localized to plasma

membrane (Table 1). The predicted localization of CsTIPs, CsNIPs and CsSIPs

was more diverse, including vacuole (CsTIP1;1, CsTIP1;4, CsTIP2;1, CsTIP2;2,

CsTIP2;3, CsTIP4;1, CsNIP1;1 and CsNIP4;1), cytosol (CsTIP1;2, CsTIP1;3,

Page 55: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

42

CsTIP3;1, CsTIP5;1, CsNIP2;1 and CsNIP2;2), plasma membrane (CsNIP2;3,

CsNIP3;1, CsNIP5;2, CsNIP6;1, CsSIP1;1 and CsSIP1;2), chloroplast

(CsNIP5;1 and CsSIP2;1) and secreted (CsTIP6;1) (Table 1). These results

seem to be in agreement with the experimentally determined localizations of

MIPs reported in the literature [13,39].

MIP folding is characterized by six transmembrane a-helices (H1 to H6)

that are connected by five loops (loops A-E), forming an aqueous

transmembrane pore that constitutes the functional core of MIPs [35]. Loops B

(LB) and E (LE) contain two highly conserved NPA (Asn-Pro-Ala) motifs that are

considered to be critical for the substrate selectivity of MIPs [40,41]. Another set

of four conserved residues forms the aromatic/Arginine selectivity filter (ar/R

filter), which has been proposed to act as a size exclusion barrier for substrate

molecules [42]. The first two residues are located in H2 and H5, while the latter

two are found in LE (LE1 and LE2). Finally, seven key amino acid residues

(named positions P1 to P7) have been proposed to discriminate the five

subfamilies [12,34]. P1 is located in the terminal part of H3, while P2 and P3 are

located in LE, just behind the second NPA motif (2nd and 6th residues after 2nd

NPA, respectively). P4 and P5 correspond to two consecutive amino acids

located in H6, while P6 and P7 also correspond to two consecutive amino acids

located in H3. The multiple sequence alignments were carefully analyzed and

all these conserved motifs and amino acid residues were identified in most

CsMIPs, indicating that they are functional channels for water and other solutes

(S2 Table). All the CsPIPs showed the dual typical NPA motifs and an ar/R filter

configuration characteristic for a water-transporting MIP (F,H,T,R). Additional

presence of the S-A-F-W residues at P2-P5 positions, as observed in all

CsPIPs, except for CsPIP1;1, has been interpreted as a signature of CO2

transporters PIPs [35]. All the CsTIPs also had the two canonical NPA motifs,

except CsTIP1;3, CsTIP5;1 and CsTIP6;1, which were found to encode

truncated proteins lacking either the first (CsTIP1;3) or the second NPA motif

(CsTIP5;1 and CsTIP6;1), as well as other conserved amino acid residues of

the ar/R filter region (S2 Table). TIPs containing the H-I-A-V or H-I-G-R

residues in the ar/R filter and T-A-A-Y-W or T-S-A-Y-W residues at P1-P5

positions, like CsTIP1s, CsTIP2s and CsTIP3, have been shown to transport

urea and H2O2 [35]. The CsNIP1;1, CsNIP2;1, CsNIP2;2 and CsNIP2;3 showed

Page 56: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

43

an ar/R filter configuration identical to that of soybean Nodulin 26, indicating that

they are also able to facilitate water and solute transport capability [30]. The

residue at the H5 position of the ar/R filter of AtNIP5;1 was shown to play a key

role in the membrane permeability to water, silicic acid (Si) and boric acid (B)

[42]. AtNIP5;1 with AIGR residues for the ar/R filter was shown to transport

water, B and arsenite (As), but not Si [42]. CsNIP3;1, with GSGR residues for

ar/R filter, can be expected to transport water, Si and B, while CsNIP4;1 (AIGR

residues) may transport water, B and As. The CsSIPs showed a less conserved

first NPA motif, while the second NPA motif was perfectly conserved in all

members (S2 Table). AtSIP1 isoforms, but not AtSIP2;1, were shown to be

functional water channels [43], suggesting that the latter may be involved in the

transport of solutes. However, SIP transport function and structural organization

still await biochemical characterization. The CsXIPs also showed a modified

first NPA motif, NPL (CsXIP1s) or SPV (CsXIP2), and a conserved second NPA

motif (S2 Table). The four positions in the ar/R filter region contained amino

acid residues that were strictly conserved among the CsXIPs. CsXIP1;1 was

observed to contain an internal deletion of 13 amino acid residues in the H2

region that abolished the conserved amino acid V at position H2 of the ar/R

selective filter. Since the first three amino acid of the ar/R filter have rather

hydrophobic residues (VVAR or VVVR), the CsXIPs might be involved in the

transport of molecules other than water [35]. In fact, a recent study has

indicated that the Solanaceae XIPs are plasma membrane aquaporins involved

in the transport of many uncharged substrates, such as urea, H2O2 and B [44].

3.3 Genomic organization of CsMIPs

The exon-intron structure of all 34 CsMIP genes was analyzed using the

sweet orange gene models annotated in Phytozome. With a few exceptions, the

number and size of the exons, but not of the introns, were observed to be

conserved within each CsMIP subfamily (S2 Fig). All the CsPIPs presented

three introns and four exons, as reported for all Arabidopsis [5], poplar [9],

tomato [11] and soybean PIPs [12]. The majority of CsTIPs contained two

introns and three exons, with exception of CsTIP1;1, CsTIP2;3 and CsTIP6;1,

which showed one intron and two exons, and the truncated CsTIP1;3 (one

Page 57: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

44

exon) gene. Such a more varied pattern of exon-intron structure has been also

observed in Arabidopsis [5], poplar [9], tomato [11] and soybean TIPs [12]. Most

CsNIPs contained four introns and five exons, like all Arabidopsis [5] and most

poplar [9], tomato [11] and soybean NIPs [12]. The exceptions were CsNIP2;2

(three introns and four exons), CsNIP5;2 (two introns and three exons) and the

truncated CsNIP5;1 (one intron and two exons) genes. The CsSIPs featured

two introns and three exons, except CsSIP1;2 (one exon and one intron in the

3’-UTR region). Similar patterns of exon-intron structure were also reported for

tomato SIPs [11], while all the Arabidopsis [5] and poplar SIPs [9] had two

introns and three exons. The gene structure of CsXIPs varied among all

members, which contained two introns and three exons (CsXIP1;2), either one

intron and two exons (CsXIP2;1) or only one exon (CsXIP1;1). The pattern of

two introns and three exons has been reported for most poplar [9] and tomato

XIPs [11], while all soybean XIPs contained a single intron and two exons [12].

The positions of all 34 CsMIPs were mapped on the sweet orange

chromosomes by homology searches against the full-length sweet orange

genome assembly available at the CAP database (Table 1 and S3 Table).

Except for CsTIP1;1, which was not exactly located on any chromosome

because of an incomplete physical map for sweet orange, all the CsMIP loci

were precisely mapped on every sweet orange chromosome, indicating a wide

distribution of the gene family in the sweet orange genome (Table 1 and S3

Fig). The closely related CsMIP isoforms CsTIP1;2 and CsTIP1;3, CsTIP2;1

and CsTIP2;2, CsTIP5;1 and CsTIP6;1, and CsNIP2;1 and CsNIP2;2 were

respectively mapped on identical chromosome positions since they showed

significant hits to the same genes in the CAP database (S3 Table). Seven

CsMIPs were found to be tandem duplicated genes according to the criteria of

Hanada et al. [45], which defined tandem duplicates as genes in any gene pair,

T1 and T2, that (1) belong to the same gene family, (2) are located within 100 kb

each other, and (3) are separated by 10 or fewer nonhomologous spacer

genes. These were CsNIP5;1 and CsNIP5;2 on chromosome 1, CsPIP1;1 and

CsPIP1;2 on chromosome 7, and CsXIP1;1, CsXIP1;2 and CsXIP2;1 on

chromosome 8 (Table 1 and S3 Fig). These results suggest that all these

CsMIPs may have evolved from tandem duplication events, as also recently

proposed for the tomato XIPs [11].

Page 58: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

45

Analysis of previously mapped traits revealed that the 282-kb region

surrounding the Citrus Tristeza Virus resistance (Ctv) locus is physically linked

(~40-kb) to the CsNIP5;1 and CsNIP5;2 genes,on the chromosome 1 [46]. This

region was also reported to contain Tyr1, the major locus controlling citrus

nematode (Tylenchulus semipenetrans) resistance [47,48].

3.4 Expression patterns of CsMIP genes in different tissues

To investigate the expression patterns of CsMIPs in different tissues,

RNA-seq data were downloaded from CAP [24]. The heatmap generated

showed a differential transcript abundance of the 34 CsMIPs in four major

tissues, namely callus, flower, leaf, fruit, and mixed fruit tissues at three

developmental stages (S4 Fig). Some of the CsMIPs (CsPIP1;1, CsPIP1;3,

CsPIP2;2, CsPIP2;3 and CsSIP1;1) showed higher expression in all the seven

tissues, indicating a role in constitutive transport processes throughout the

plant. Others genes were found to have a low expression in all the tissues

(CsTIP1;1, CsTIP1;2, CsTIP1;3, CsTIP2;3, CsTIP5;1, CsTIP6;1, CsNIP2;1,

CsNIP2;2, CsNIP2;3, CsNIP5;1, CsNIP5;2, CsXIP1;1 and CsXIP2;1). The

putative tandem duplicated CsMIP genes were observed to have divergent

expression profiles, which probably has contributed to their maintenance

through regulatory subfunctionalization and neofunctionalization [49]. CsPIP1;1

showed a higher expression than CsPIP1;2 in all the seven tissues analyzed.

CsXIP1;1 and CsXIP2;1 showed low expression in all the seven tissues

analyzed, while CsXIP1;2 exhibited a high expression in flower, leaf and mixed

fruit tissue (Mix.3).

The cell type localization of aquaporin expression can also provide clues

about their physiological roles. For instance, expression of PIP aquaporins is

generally localized in organs and tissues characterized by large fluxes of water,

such as vascular tissues, guard cells, flowers and fruits [4]. Their expression in

roots and leaves has been also correlated with the presence of apoplastic

barriers, the exodermis and endodermis in roots or in suberized bundle sheath

cells in leaves, suggesting their essential role in the transmembrane water

diffusion when its movement is hindered [19,20,50-55]. Except for CsPIP2;1, all

the CsPIPs were found to be highly expressed in flower, leaf, fruit and mixed

Page 59: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

46

fruit tissues (S4 Fig), supporting their active role in the transport of water and

solutes across these tissues. By contrast, the expression of TIP isoforms has

been more related to developmental stages and/or organ specificity [56]. For

instance, the expression of AtTIP2;1 is especially high in the vascular system of

the shoot but is barely detectable in the root [57]. AtTIP3;1 is highly expressed

in cotyledons and associated with the membrane of protein storage vacuoles

[4]. TIPs are also differentially expressed during fruit maturation, e.g., the

TIP1;1 homolog in pear is highly expressed in the young fruit, whereas TIP

proteins levels in grape gradually increase along with ripening [58,59]. Vacuoles

participate in cell expansion and, thus, their enlargement by water

compartmentation is essential to provoke the rapid fruit growth that is

characteristic of the ripening process. The lack of specific regulation observed

along fruit ripening for PIPs isoforms points out the essential role of TIPs in this

process [60]. The differential expression of CsTIP1;3, CsTIP1;4, CsTIP2;1,

CsTIP2;2, CsTIP3;1, CsTIP4;1 and CsTIP5;1 highlights the functional

importance of these CsMIPs on each tissue and stage of fruit development

analyzed (S4 Fig). The overall level of NIP expression is usually lower than the

expression of PIPs and TIPs, and it is usually associated with specialized

organs and cells [10]. For instance, AtNIP2;1 is specifically expressed in the

endoplasmic reticulum (ER) of roots, whereas AtNIP5;1 is a plasma membrane

MIP mainly expressed in root elongation zones [39,61]. Our analysis showed

that the CsNIPs had preferential expression either in flower (CsNIP6;1), leaf

(CsNIP2;2 and CsNIP3;1) or mixed fruit tissues at different developmental

stages (CsNIP1;1, CsNIP2;2, CsNIP3;1, CsNIP4;1 and CsNIP6;1) (S4 Fig).

SIPs seem to be expressed in a range of tissues in Arabidopsis, including

young roots, flowers and pollen [62]. It is remarkable that SIPs are also strongly

expressed in suspension cultured cells compared to other MIPs [62]. CsSIP1;1

was observed to be constitutively expressed in all the seven tissues analyzes,

while the others were preferentially expressed in flower and fruit tissues (S4

Fig). XIPs were reported to be expressed in almost all the poplar tissues [9]. By

contrast, CsXIPs showed a low expression in all tissues analyzed, except

CsXIP1;2, which show a relatively high expression in flower, leaf and mixed fruit

tissues at third developmental stage (Mix.3) (S4 Fig).

Page 60: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

47

3.5 Expression patterns of CsMIP genes under abiotic and biotic stresses

To identify CsMIPs with a potential role in abiotic and biotic stress

response of sweet orange, the expression patterns of all the 34 sweet orange

MIPs were investigated in plants exposed to drought, high salinity and ‘Ca. L.

asiaticus’ (HLB) infection, by qPCR. Considering the log2 fold change (LFC) of

≥1.00 or ≤-1.00 as cutoff threshold between stressed and control plants, the

qPCR analyses showed that all the CsMIPs were differentially expressed in at

least one stress condition and tissue analyzed (Figs.1-3). Twelve CsMIPs

(CsPIP1;1, CsPIP2;4, CsTIP1;3, CsTIP2;1, CsTIP2;2, CsTIP3;1, CsTIP4;1,

CsNIP1;1, CsSIP1;2, CsXIP1;1, CsXIP1;2 and CsXIP2;1) were observed to be

differentially expressed in response to all the three stress conditions analyzed,

in at least one tissue studied. Interestingly, only CsTIP1;1 showed differential

expression exclusively in response to the abiotic stress treatments, while six

CsMIPs (CsPIP1;2, CsPIP2;2, CsNIP2;2, CsNIP5;2, CsNIP6;1 and CsSIP1;1)

were differentially expressed exclusively under the biotic stress treatment.

These results seem to be consistent with the respective organization of the

stress-responsive cis-acting regulatory elements observed in the CsMIPs

promoters (S5 Fig). CsTIP1;1 was observed to contain the highest number of

ABRE copies in the promotor region among the sweet orange MIP genes, while

no or a low number of ABRE (less than 2 copies) and other stress-responsive

cis-acting regulatory elements was detected in the promoter regions of the

CsMIPs that were not induced by the abiotic stress treatments (S5 Fig). A single

copy of DRE/CRT has been observed to be sufficient for ABA-independent

stress-responsive gene expression, while more than two ABRE sequences are

usually required for the ABA-responsive transcription [63].

Page 61: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

48

Fig 1. Expression analysis of the complete set of sweet orange MIPs in

response to drought treatment. Ratios (log2) of relative mRNA levels between

stressed and control plants for all 34 CsMIPs in leaves and roots, as measured

by qPCR. GAPC2 was used as an endogenous control. The bars show means

± SE from three biological replicates.

Page 62: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

49

Fig 2. Expression analysis of the complete set of sweet orange MIPs in

response to salt treatment. Ratios (log2) of relative mRNA levels between

stressed and control plants for all 34 CsMIPs in leaves and roots, as measured

by qPCR. GAPC2 was used as an endogenous control. The bars show means

± SE from three biological replicates.

Fig 3. Expression analysis of the complete set of sweet orange MIPs in

response to ‘Ca. L. asiaticus’ infection in rough lemon (LEM) and sweet

orange (SWO). Ratios (log2) of relative mRNA levels between infected and

control plants at 0, 7, 17, and 34 WAI for all 34 CsMIPs, as measured by qPCR.

GAPC2 was used as an endogenous control.

All the CsTIPs and CsXIPs were upregulated in leaves but

downregulated in roots by drought treatment, while only two CsPIPs (CsPIP1;1

and CsPIP2;4) and one CsNIP (CsNIP1;1) and CsSIP (CsSIP1;2) were

differentially upregulated by drought treatment in leaves (Fig 1). Most CsMIPs

were upregulated by salt treatment in roots, and either upregulated or

downregulated by this treatment in leaves, depending on the isoform (Fig2). A

coordinated up- and downregulation, depending on the MIP gene and organ

examined, has been described as a general pattern of MIP regulation during

drought and salt stresses in Arabidopsis [64-67], soybean [12] and rice [68]. It

has been proposed that a general downregulation of MIPs might be a way for

Page 63: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

50

the plant to minimize water loss and the hence loss of turgor in specific organs,

and that the upregulation of individual MIPs could be a way for the plant to

direct water flow to certain organs or cells that are crucial for plant survival

during stress, or necessary for its fast recovery upon rehydration [65]. Thus, the

concomitant upregulation in leaves and downregulation in roots of the CsTIPs

and CsXIPs by drought treatment likely reveal a coordinated regulation of these

MIP isoforms to direct the water flow through the leaf plasma membrane and

tonoplast, while avoiding the water loss in roots. On the other hand, the

upregulation of most CsMIPs in roots by salt treatment suggests their

coordinated regulation to increase the overall water flow into this organ, since it

is well known that salt stress reduces the hydraulic conductivity in roots,

resulting in decreases of water flow from root to shoot. Those CsMIPs that were

upregulated in leaves by salt treatment (i.e., CsPIP1;4, CsTIP1;1, CsTIP2;1,

CsTIP2;2, CsTIP3;1, CsNIP2;3, CsNIP4;1, CsXIP1;1 and CsXIP1;2) may also

contribute to increase the water flow into this organ. The time-course

transcriptional analysis in response to ‘Ca. L. asiaticus’ infection showed that 32

out of 34 CsMIPs were strongly downregulated at the early stage (7 weeks) in

the highly susceptible sweet orange, but not in the tolerant rough lemon, whose

expression levels of all CsMIPs were either upregulated or unchanged at this

stage (Fig3). At the later time points (17 and 34 weeks), significantly differential

expression levels between the susceptible and tolerant citrus species were

essentially limited to CsPIP2;2, CsTIP1;2, CsTIP2;1, CsTIP2;2 and CsNIP5;1.

‘Ca. L. asiaticus’ is the most widely distributed of the three species of the

phloem-limited a-proteobacterium, designated as Candidatus Liberibacter (i.e.,

‘Ca. L. asiaticus’, ‘Ca. L. africanus’ and ‘Ca. L. americanus’), which has been

associated with the most destructive disease affecting citrus worldwide, the

Huanglongbing (HLB) disease [69]. Leaf symptoms of HLB disease have been

well documented [69]. These include vein yellowing and blotchy mottle, reduced

leaf size and premature leaf abscission.Anatomical alterations caused by the

disease in leaves include the excessive accumulation of starch, callose

depositions, phloem plugging, necrosis and collapse, swelling of sieve elements

and companion cell walls, and the disruption of chloroplast inner grana

structures [27,69-74]. Significant differences on phloem ultrastructure and

phloem loading activity were also observed between HLB-infected sweet

Page 64: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

51

orange and rough lemon plants, highlighting some underlying differences

between tolerance and susceptibility mechanisms to HLB disease [27]. While

the phloem transport activity in the midribs of leaves was considerably impaired

in diseased sweet orange, it was much less significantly affected in infected

rough lemon [27]. The downregulation of most CsMIPs as observed 7 WAI in

the susceptible sweet orange, but not in the tolerant rough lemon, correlates

with the onset of disease symptoms, such as blotchy leaf mottle and yellowing

[27]. The continued contrasting expression patterns of CsPIP2;2, CsTIP1;2,

CsTIP2;1, CsTIP2;2 and CsNIP5;1 between the tolerant and susceptible citrus

species throughout the 17 and/or 34 WAI suggests an involvement of these

CsMIP genes in further symptom development, such as growth inhibition and

impaired phloem loading [27]. Taken together, these results indicate that MIP

genes may play an active role in the pathogenesis of HLB disease by regulating

the flow of water and nutrients required for the normal growth and development

of citrus plants. The recent finding in a microarray experiment that CsPIPs were

observed to be downregulated in stems of HLB-symptomatic sweet orange

trees, 16 months after inoculation of ‘Ca. L. asiaticus’, is consistent with this

interpretation [74].

4 CONCLUSION

This study presented a genome-wide survey of the MIP gene family in

sweet orange. A total of 34 open reading frames (ORFs) encoding MIP proteins

were identified and characterized as to their sequences, phylogenetic

relationships, genomic organization, tissue-specific gene expression and

expression profiles upon abiotic and biotic stresses. Our results allow us to

assess the relative contribution of each CsMIP member to water and solute

transport in different tissues and in response to drought, salinity and ‘Ca. L.

asiaticus’ infection. These results suggest a special role for CsTIPs and CsXIPs

in delivering water to the leaves while preventing root tissue dehydration under

drought stress, and for most CsMIPs in increasing the overall water flow into the

roots during salt stress and also regulating the flow of water and nutrients

during the development of HLB disease. Taken together, our results support the

Page 65: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

52

idea that these CsMIP genes represent an important genetic resource for

improving citrus tolerance or resistance to both abiotic and biotic stresses.

5 ACKNOWLEDGEMENTS

The authors are grateful to Dr. Eduardo A. Girardi (Embrapa Cassava & Fruits,

Cruz das Almas, Bahia, Brazil) for kindly providing the grafted citrus plant

material used in this study. We gratefully acknowledge the Ph.D. scholarship to

C.P.S.M. by the CAPES Foundation (Brasília, Brazil).

6 REFERENCES

1. Maurel C, Verdoucq L, Luu DT, Santoni V. Plant aquaporins: membrane

channels with multiple integrated functions. Annu Rev Plant Biol.2008;59:

595-624.

2. Maurel C, Santoni V, Luu DT, Wudick MM, Verdoucq L. The cellular

dynamics of plant aquaporin expression and functions. Plant Biol. 2009;12:

690-698.

3. Sutka M, Li G, Boudet J, Boursiac Y, Doumas P, Maurel C. Natural variation

of root hydraulics in Arabidopsis grown in normal and salt stressed

conditions. Plant Physiol. 2011;155: 1264-1276.

4. Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H, Chaumont F.

Aquaporins are multifunctional water and solute transporters highly

divergent in living organisms. Acta Biochim Biophys. 2009;1788: 1213-1228.

5. Johanson U, Karlsson M, Jahansson I, Gustavsson S, Sjovall S, Fraysse L,

et al. The complete set of genes encoding major intrinsic proteins in

Arabidopsis provides a framework for a new nomenclature for major intrinsic

proteins in plants. Plant Physiol. 2001;126: 1358-1369.

6. Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R. Aquaporins

constitute a large and highly divergent protein family in maize. Plant Physiol.

2001;125: 1206-1215.

7. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M. Identification

of 33 rice aquaporin genes and analyses of their expression and function.

Plant Cell Physiol. 2005;45: 1568-1577.

Page 66: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

53

8. Fouquet R, Leon C, Ollat N, Barrieu F. Identification of grapevine aquaporins

and expression analysis in developing berries.Plant Cell Rep.2008;27: 1541-

1550.

9. Gupta AB, Sankararamakrishnan R. Genome-wide analysis of major intrinsic

proteins in the tree plant Populus trichocarpa: characterization of XIP

subfamily of aquaporins from evolutionary perspective. BMC Plant Biol.

2009;9: 134.

10. Park W, Scheffler BE, Bauer PJ, Campbell BT. Identification of the family of

aquaporin genes and their expression in upland cotton (Gossypium hirsutum

L.). BMC Plant Biol. 2010;10: 142.

11. Reuscher S, Akiyama M, Mori C, Aoki K, Shibata D, Shiratake K. Genome-

wide identification and expression analysis of aquaporins in tomato. PLoS

One. 2013;8: e79052.

12. Zhang DY, Ali Z, Wang CB, Xu L, Yi JX, Xu ZL, et al. Genome-wide

sequence characterization and expression analysis of major intrinsic

proteins in soybean (Glycine max L.). PLoS One. 2013;8: e56312.

13. Wudick MM, Luu D, Maurel C. A look inside: localization patterns and

functions of intracellular plant aquaporins. New Phytol. 2009;184: 289-302.

14. Gustavsson S, Lebrun AS, Nordén K, Chamont F, Johanson U. A novel

plant major intrinsic protein in Physcomitrella patensmost similar to bacterial

glycerol channels. Plant Physiol. 2005;139: 287-295.

15. Danielson JAH, Johanson U. Unexpected complexity of the aquaporin gene

family in the moss Physcomitrella patens. BMC Plant Biol. 2008;8: 45.

16. Liénard D, Durambur G, Kiefer-Meyer MC, Nogue F, Menu-Bouaouiche L,

Charlot F, et al. Water transport by aquaporins in the extant plant

Physcomitrella patens. Plant Physiol.2008;146: 1207-1218.

17. Postaire L, Verdoucq L, Maurel C. Aquaporins in plants: from molecular

structures to integrated functions. Adv Bot Res. 2008;46: 75-136.

18. Maurel C. Plant aquaporins: novel functions and regulation properties. FEBS

Lett. 2007;581: 2227-2236.

19. Prado K, Maurel C. Regulation of leaf hydraulics: from molecular to whole

plant levels. Front Plant Sci. 2013;4: 255.

Page 67: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

54

20. Hachez C, Zelazny E, F Chaumont F. Modulating the expression of

aquaporin genes in planta: a key to understand their physiological functions.

Acta Biochim Biophys. 2006;1758: 1142-1156.

21. Rodríguez-Gamir J, Ancillo G, Aparicio F, Bordas M, Primo-Millo E, Forner-

Giner MA. Water-deficit tolerance in citrus is mediated by the down

regulation of PIP gene expression in the roots. Plant Soil. 2011;347: 91-104.

22. Rodríguez-Gamir J, Ancillo G, Legaz F, Primo-Millo E, Forner-Giner MA.

Influence of salinity on PIP gene expression in citrus roots and its

relationship with root hydraulic conductance, transpiration and chloride

exclusion from leaves. Environ Exp Bot. 2012;78: 163-166.

23. Xu Q, Chen L-L, Ruan X, Chen D, Zhu A, Chen C, et al. The draft genome

of sweet orange (Citrus sinensis). Nat Genet. 2013;45: 59-66.

24. Wang J, Chen D, Lei Y, Chang J-W, Hao B-H, Xing F, et al. Citrus sinensis

Annotation Project (CAP): a comprehensive database for sweet orange

genome. PLoS One. 2014;9: e87723.

25. Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, et al.

Sequencing of diverse mandarin, pummelo and orange genomes reveals

complex history of admixture during citrus domestication. Nat Biotechnol.

2014;32: 656-662.

26. de Oliveira TM, Cidade LC, Gesteira AS, Coelho-Filho MA, Soares-Filho

WS, Costa MGC. Analysis of the NAC transcription factor gene family in

citrus reveals a novel member involved in multiple abiotic stress responses.

Tree Genet Genom. 2011;7: 1123-1134.

27. Fan J, Chen C, Yu Q, Khalaf A, Achor DS, Brlansky RH, et al. Comparative

transcriptional and anatomical analyses of tolerant rough lemon and

susceptible sweet orange in response to 'Candidatus Liberibacterasiaticus'

infection. Mol Plant Microbe Interact. 2012;25: 1396-1407.

28. Li WB, Hartung JS, Levy L. Quantitative real-time PCR for detection and

identification of Candidatus Liberibacter species associated with citrus

huanglongbing. J Microbiol Meth. 2006;66: 104-115.

29. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The

Pfam protein families database. Nucleic Acids Res. 2012;40: D290-D301.

Page 68: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

55

30. Wallace IS, Roberts DM. Homology modeling of representative subfamilies

of Arabidopsis major intrinsic proteins. Classification based on the

aromatic/arginine selectivity filter. Plant Physiol. 2004;135: 1059-1068.

31. Thompson JD, Higgens DG, Gibson TJ. CLUSTAL W: Improving the

sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic

Acids Res. 1994;22: 4673-4680.

32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular

Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 2013;30: 2725-

2729.

33. Saitou N, Nei M. The Neighbor-Joining method: a new method for

reconstructing phylogenetic trees. Mol Biol Evol. 1987;4: 406-425.

34. Froger A, Tallur B, Thomas D, Delamarche C. Prediction of functional

residues in water channels and related proteins. Protein Sci. 1998;7: 1458-

1468.

35. Hove RM, Bhave M. Plant aquaporins with non-aqua functions: deciphering

the signature sequences. Plant Mol Biol. 2011;75: 413-430.

36. Voorrips R. MapChart: software for the graphical presentation of linkage

maps and QTLs. J Hered. 2002;93: 77-78.

37. Mafra V, Kubo KS, Alves-Ferreira M, Ribeiro-Alves M, Stuart RM, Boava LP,

et al. Reference genes for accurate transcript normalization in citrus

genotypes under different experimental conditions. PLoS One. 2012;7:

e31263.

38. Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P. The role of

aquaporins in cellular and whole plant water balance. Acta Biochim Biophys.

2000;1465: 324-342.

39. Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T. The

Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron

uptake and plant development under boron limitation. Plant Cell. 2006;18:

1498-1509.

40. Mathai JC, Agre P. Hourglass pore-forming domains restrict aquaporin-1

tetramer assembly. Biochemistry. 1999;38: 923-928.

Page 69: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

56

41. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, et al. Structural

determinants of water permeation through aquaporin-1. Nature. 2000;407:

599-605.

42. Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF. The aromatic/arginine selectivity

filter of NIP aquaporins plays a critical role in substrate selectivity for silicon,

boron, and arsenic. J Exp Bot. 2011;62: 4391-4398.

43. Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M. Novel type

aquaporin SIPs are mainly localized to the ER membrane and show cell

specific expression in Arabidopsis thaliana. FEBS Lett. 2005;579: 5814-

5820.

44. Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F. Solanaceae XIPs

are plasma membrane aquaporins that facilitate the transport of many

uncharged substrates. Plant J. 2011;66: 306-317.

45. Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu SH. Importance of

lineage-specific expansion of plant tandem duplicates in the adaptive

response to environmental stimuli. Plant Physiol. 2008;148: 993-1003.

46. Yang Z-N, Ye X-R, Molina J, Roose ML, Mirkov TE. Sequence analysis of a

282-kilobase region surrounding the Citrus Tristeza Virus resistance gene

(Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiol. 2003;131: 482-492.

47. Deng Z, Huang S, Ling P, Chen C, Yu C, Weber CA, et al. Cloning and

characterization of NBS-LRR class resistance-gene candidate sequences in

citrus. Theor Appl Genet. 2000;101: 814-822.

48. Deng Z, Tao Q, Chang Y-L, Huang S, Ling P, Yu C, et al. Construction of a

bacterial artificial chromosome (BAC) library for citrus and identification of

BAC contigs containing resistance gene candidates. Theor Appl Genet.

2001;102: 1177-1184.

49. Duarte JM, Cui L, Wall PK, Zhang Q, Zhang X, Leebens-Mack J, et al.

Expression pattern shifts following duplication indicative of

subfunctionalization and neofunctionalization in regulatory genes of

Arabidopsis. Mol Biol Evol. 2006;23: 469-478.

50. Schäffner AR. Aquaporin function, structure, and expression: are there more

surprises to surface in water relations? Planta. 1998;204: 131-139.

Page 70: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

57

51. Suga S, Murai M, Kuwagata T, Maeshima M. Differences in aquaporin levels

among cell types of radish and measurement of osmotic water permeability

of individual protoplasts. Plant Cell Physiol. 2003;44: 277-286.

52. Hachez C, Heinen RB, Draye X, Chaumont F. The expression pattern of

plasma membrane aquaporins in maize leaf highlights their role in hydraulic

regulation. Plant Mol Biol. 2008;68: 337-353.

53. Hachez C, Veselov D, Ye Q, Reinhardt H, Knipfer T, Fricke W, et al. Short-

term control of maize cell and root water permeability through plasma

membrane aquaporin isoforms. Plant Cell Environ. 2012;35: 185-198.

54. Vandeleur RK, Mayo G, Shelden MC, Gilliham M, Kaiser BN, Tyerman SD.

The role of plasma membrane intrinsic protein aquaporins in water transport

through roots: diurnal and drought stress responses reveal different

strategies between isohydric and anisohydric cultivars of grapevine. Plant

Physiol. 2009;149: 445-460.

55. Shatil-Cohen A, Attia Z, Moshelion M. Bundle-sheath cell regulation of

xylem-mesophyll water transport via aquaporins under drought stress: a

target of xylem-borne ABA? Plant Mol Biol. 2011;67: 72-80.

56. Jauh GY, Fischer AM, Grimes HD, Ryan CA, Rogers JC. Delta-tonoplast

intrinsic protein defines unique plant vacuole functions. Proc Natl Acad Sci

USA. 1998;95: 12995-12999.

57. Daniels MJ, Chaumont F, Mirkov TE, Chrispeels MJ. Characterization of a

new vacuolar membrane aquaporin sensitive to mercury at a unique site.

Plant Cell. 1996;8: 587-599.

58. Shiratake K, Kanayama Y, Maeshima M, Yamaki S. Changes in H(+)-pumps

and a tonoplast intrinsic protein of vacuolar membranes during the

development of pear fruit. Plant Cell Physiol. 1997;38: 1039-1045.

59. Shiratake K, Goto H, Maeshima M, Yamaki S. Fluctuations of the protein

levels of H+-pumps and water channels of tonoplast and plasma membrane

grape berry development. J. Japan Soc Hort Sci. 2001;70: 287-293.

60. Shiratake K, Martinoia E. Transporters in fruit vacuoles. Plant Biotechnol.

2007;24: 127-133.

61. Mizutani M, Watanabe S, Nakagawa T, Maeshima M. Aquaporin NIP2;1 is

mainly localized to the ER membrane and shows root-specific accumulation

in Arabidopsis thaliana. Plant Cell Physiol. 2006;47: 1420-1426.

Page 71: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

58

62. Maeshima M, Ishikawa F. ER membrane aquaporins in plants. Pflugers

Arch, Eur J Physiol. 2008;456: 709-716.

63. Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory

elements in osmotic- and cold-stress-responsive promoters. Trends Plant

Sci. 2005;10: 88-94.

64. Jang JY, Kim DG, Kim YO, Kim JS, Kang H. An expression analysis of a

gene family encoding plasma membrane aquaporins in response to abiotic

stresses in Arabidopsis thaliana. Plant Mol Biol. 2004;54: 713-725.

65. Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M,

Karlsson M, et al. Whole gene family expression and drought stress

regulation of aquaporins. Plant Mol Biol. 2005;59: 469-484.

66. Alexandersson E, Danielson JAH, Rade J, Moparthi VK, Fontes M, Kjellbom

P, et al. Transcriptional regulation of aquaporins in accessions of

Arabidopsis in response to drought stress. Plant J. 2010;61: 650-660.

67. Boursiac Y, Chen S, Luu DT, Sorieul M, Dries NVD, Maurel C. Early effects

of salinity on water transport in Arabidopsis roots molecular and cellular

features of aquaporin expression. Plant Physiol. 2005;139: 790-805.

68. Li G-W, Peng Y-H, Yu X, Zhang M-H, Cai W-M, Sun W-N, et al. Transport

functions and expression analysis of vacuolar membrane aquaporins in

response to various stresses in rice. J Plant Physiol. 2008;165: 1879-1888.

69. Bove JM. Huanglongbing: A destructive, newly emerging, century-old

disease of citrus. J Plant Pathol. 2006;88: 7-37.

70. Etxeberria E, Gonzalez P, Achor D, Albrigo G. Anatomical distribution of

abnormally high levels of starch in HLB-affected Valencia orange trees.

Physiol Mol Plant Pathol. 2009;74: 76-83.

71. Kim JS, Sagaram US, Burns JK, Li JL, Wang N. Response of sweet orange

(Citrus sinensis) to ‘Candidatus Liberibacterasiaticus’ infection: microscopy

and microarray analyses. Phytopathology. 2009;99: 50-57.

72. Achor DS, Etxeberria E, Wang N, Folimonova SY, Chung KR, Albrigo LG.

Sequence of anatomical symptom observations in citrus affected with

Huanglongbing disease. Plant Pathol J. 2010;9: 56-64.

73. Folimonova SY, Achor DS. Early events of citrus greening (Huanglongbing)

disease development at the ultrastructural level. Phytopathology. 2010;100:

949-958.

Page 72: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

59

74. Aritua V, Achor D, Gmitter FG, Albrigo G, Wang N. Transcriptional and

microscopic analyses of citrus stem and root responses to Candidatus

Liberibacterasiaticus infection. PLoS One. 2013;8: e73742.

7 SUPPORTING INFORMATION

S1 Fig. Phylogenetic relationships of the complete set of 34 sweet orange

MIPs with members of Arabidopsis and other plants. The deduced amino

acid sequences were aligned using ClustalW2 and the phylogenetic tree was

generated using Bootstrap N-J tree (1,000 resamplings) method and MEGA

program (v6.0.5). Numbers at internal nodes denotes the results of

bootstrapping analysis (n = 1000). Black diamonds indicate MIP gene from

sweet orange. Cs, Citrus sinensis; At, Arabidopsis thaliana; Rc, Ricinus

communis; Nb, Nicotiana benthamiana.

Page 73: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

60

S2 Fig. Analysis of exon-intron structures of the 34 sweet orange MIP

genes.NOI denotes the number of introns, E the exon and I the intron.

S3 Fig. Chromosomal locations of CsMIPs. The chromosomal position of

each CsMIP was mapped according to the Citrus sinensis Annotation Project

(CAP). The scale is in Mb. CsSIP (circle), CsPIP (star), CsNIP (square), CsTIP

(triangle), CsXIP (diamond).

Page 74: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

61

S4 Fig. Heatmap of the expression of CsMIPs in different tissues of sweet

orange. Mix.1, Mix.2 and Mix.3 indicate mixed fruit tissues from different

developmental stages. The heatmap was generated using R 3.1.0 software.

The color scale shown represents RPKM-normalized log2-transformed counts.

S5 Fig. Analysis of the stress-responsive cis-elements ABRE (ACGTG),

DRE/CRT (G/ACCGAC), MYBS (TAACTG) and LTRE (CCGAC) in promoters

of sweet orange MIP genes. The cis-elements were analyzed in the 1 kb

upstream promoter region of translation start site of all CsMIPs using the

PLACE database.

Page 75: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

62

S1Table. Primers used in the qPCR analysis.

Name Locus ID Primer Size product

(bp)

CsPIP1;1 orange1.1g018895 F: 5’-CATTCTCATCACAACATCAAACG-3’

R: 5’-CTGCTAGTCCCTCAAAAACACAA-3’

84

CsPIP1;2 orange1.1g023021 F: 5’-TCACTCCCGTAGCAAGATCA-3’

R: 5’-TTTCGCTCGCTCTTCTTCA-3’

90

CsPIP1;3 orange1.1g023107 F: 5’-CCTCAACTTTCTCGCTACGC-3’

R: 5’-TGATGAACCTCTCTCTCGCTCT-3’

85

CsPIP1;4 orange1.1g023069 F: 5’-TCTGCTGTATATGTACAACCCTTCG-3’

R: 5’-ATAGGAATCGGCCATGAACA-3’

80

CsPIP2;1 orange1.1g023108 F: 5’-TAGGCGGCAATGCTAAGTTT-3’

R: 5’-ATGATGAAGAAGGGCGAAGA-3’

89

CsPIP2;2 orange1.1g022966

F: 5’-GCAAACACAACAGTCGTAGCTCT-3’

R: 5’-CTTCAACATCCTTCCCCATTT-3’

90

CsPIP2;3 orange1.1g019681 F: 5’-TGTTGTCATTTTGCTACTCGTTTC-3’

R: 5’-GGCGTGCCATATTGCTTTTA-3’

85

CsPIP2;4 orange1.1g023370 F: 5’-TTTCTGTTATTTGTTCGCTTGTGT-3’

R: 5’-AATGGAAAAATAAAGAGAAGGGTCA-3’

81

CsTIP1;1 orange1.1g025548 F: 5’-AAGCTCCTAGTTGAGAAGTGGAGA-3’

R: 5’-ACGATGAAGATTGAACCTTTGG-3’

81

CsTIP1;2 orange1.1g025600 F: 5’-AACGGTCGGTTAAGCAGATT-3’

R: 5’-GAGGGCGGAGAAAATATTGA-3’

82

CsTIP1;3 orange1.1g037978 F: 5’-GAGGCTCCAAAACCACAAAT-3’

R: 5’-TTTCTTAGCGCGATGGGTAT-3’

90

CsTIP1;4 orange1.1g025464 F: 5’-AACGGAGCACAAAACAGAGC-3’

R: 5’-CGAAAATTTTGTCAAAGAAAAACG-3’

83

CsTIP2;1 orange1.1g025817 F: 5’-TCATTTCTTTTGGAGGTTGTAAAAA-3’

R: 5’-TCCCAATCCATCCATTATCG-3’

80

CsTIP2;2 orange1.1g025865

F: 5’-TGTGGTGGGGTGTATGAAAA-3’

R: 5’-TTATCTGACGAAACCCCATT-3’

83

CsTIP2;3 orange1.1g038895

F: 5’-GATCTGTTTGGGCTTTTTGG-3’

R: 5’-TTAAACATGACGAGGCACAA-3’

83

CsTIP3;1 orange1.1g025197

F: 5’-CGCAGCATCATCCATTAACA-3’

R: 5’-AAAGCTGCTTCTGCTTCTGC-3’

83

CsTIP4;1 orange1.1g025864 F: 5’-AAGCTGCTGTTTCTCTCTTGATG-3’

R: 5’-CAAAATGACAGCAGCCAAAAA-3’

88

CsTIP5;1 orange1.1g046726

F: 5’-TCTTGCGGAATTCATCTCAAC-3’

R: 5’-GCTGCGTCTGGACTCAATTT-3’

87

CsTIP6;1 orange1.1g042738 F: 5’-CTTGAAATCCACGAACCTCA-3’

R: 5’-AGCCCACCAATGGAAATAAA-3’

85

CsNIP1;1 orange1.1g023184 F: 5’-CCAAGAGGAGGACGCTGTT-3’

R: 5’-CCAGTACATGCCATTCACACA-3’

86

CsNIP2;1 orange1.1g036721 F: 5’-TTATTGGAACGGTGACAGGA-3’

R: 5’-AGGAATTGATGTGCAGTTGG-3’

81

CsNIP2;2 orange1.1g040981 F: 5’-CCATCATTCAAAAGGCCAGT-3’

R: 5’-AACCGGTTGTGCCAATAAAT-3’

82

CsNIP2;3 orange1.1g040755 F: 5’-CTCCTGCCTCAACAAAATGC-3’ 84

Page 76: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

63

R: 5’-TTGCCTTTTGGAGGAGTTGA-3’

CsNIP3;1 orange1.1g023102

F: 5’-AAGAATTCGGCTGTGTCTGT-3’

R: 5’-CACGGAATTGAAACCGTGTA-3’

82

CsNIP4;1 orange1.1g046511 F: 5’-AGGCGAAGTCAGGATTCAAGT-3’

R: 5’-AACTGGAATATCCGGGAAGC-3’

89

CsNIP5;1 orange1.1g035030 F: 5’-ATGAATCTGGCATTGTGCAG-3’

R: 5’-CCCGGCTATGAGTATGTTGA-3’

83

CsNIP5;2 orange1.1g027840 F: 5’-CATGTGTGCGTAGCCATATGTAG-3’

R: 5’-AAATTAACGTGAAAATGCAGCAG-3’

87

CsNIP6;1 orange1.1g039196

F: 5’-GTTTCTGCCTTCTGGGTTGA-3’

R: 5’-GCCAAAGCATTGAGCTTCAC-3'

87

CsSIP1;1 orange1.1g026039 F: 5’-AAGAAATACACGTGGCTAAAATTCA-3’

R: 5’-TTTGGTTGGGTGCCAATAAC-3’

82

CsSIP1;2 orange1.1g026082 F: 5’-TCCTTCAACTCCAACAACCA-3’

R: 5’-ATGTTGCCCCAAAGTGAAAG-3’

84

CsSIP2;1 orange1.1g026600 F: 5’-ATCAGCTCAGATGAAGGCAAAT-3’

R: 5’-ATTCCAAAGGGATTCATCTACAAA-3’

90

CsXIP1;1 orange1.1g036381 F: 5’-ATCGACACTGGGTTTTCTGG-3’

R: 5’-TGGAGATGCTGACTTGGAAT-3’

88

CsXIP1;2 orange1.1g040654 F: 5’-TTACTGTTTGTTGGGCTTGG-3’

R: 5’-TTGAAGCATACCCATCCACA-3’

80

CsXIP2;1 orange1.1g045670

F: 5’-TCGCAACTATCACAGCCTTT-3’

R: 5’-GGCCTTTTTGCTAACCCTTT-3’

86

GAPC2

Glyceraldehyde-3-phosphate

dehydrigenase C2

F: 5’-TCTTGCCTGCTTTGAATGGA -3’

R: 5’-TGTGAGGTCAACCACTGCGACAT-3’

80

S2Table. Conserved specificity-determining amino acid residues in sweet

orange MIPs.

NPA ar/R Filter SDP1

Subfa

mily

1st 2nd H2 H5 LE

1

LE

2

P1 P2 P

3

P4 P5 P6 P7

CsPIP NPA NPA F H T R Q/E/

M

S A F/

D

W/

F

C/S G

CsTIP NPA NPA H/N I A/

G

R/

V

T/A/

V

S/

A

A Y W V/A/

M

A

CsNIP NPA/S

/G

NPA

/V

W/A/

G/T

V/I/

S

A/

G

R F/L/

V

S/

T

A Y/

F

I/L L/C/

S

A/

G

CsSIP NPT/S

/L

NPA V/A/S I/V/

H

P/

G

N/

S

M/F A/

V

A Y W G/A/

T

G

CsXIP N/SPL

/V

NPA V V A/

V

R V/M C A F W F/V G

1Specificity determining positions according to Froger et al. [34] and Zhang et al [12].

Page 77: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

64

S3 Table. Similarity analysis of MIP genes from diploid (Phytozome) and

dihaploid (CAP) sweet oranges (C. sinensis) and haploid Clementine (C.

clementina).

DiploidSweet Orange Dihaploid Sweet Orange Haploid Clementine

Gene

name

ID

(Phytozome)

ID

(CAP)

Identity

(%)

E-value

Score

ID

(Phytozome)

Identity

(%)

E-value

Score

CsPIP1;1 orange1.1g018895 Cs7g31420 98 0 2858 Ciclev10032308m 98 0 2874

CsPIP1;2 orange1.1g023021 Cs7g31410 100 0 2607 Ciclev10032308m

Ciclev10032298m

99

99

0

0

2607

2621

CsPIP1;3 orange1.1g023107 Cs5g03460 100 0 3947 Ciclev10021502m 98 0 3864

CsPIP1;4 orange1.1g023069 Cs6g07970 100 0 2587 Ciclev10012384m 99 0 2565

CsPIP2;1 orange1.1g023108 Cs6g11660 Cs6g11690

Cs6g11700

97 96

94

0 0

0

1915 1905

1832

Ciclev10012375m Ciclev10012379m

Ciclev10012633m

99 92

92

0 0

0

2223 1880

1847

CsPIP2;2 orange1.1g022966 Cs8g16640 100 0 3713 Ciclev10028975m 99 0 3916

CsPIP2;3 orange1.1g019681 Cs7g25610 98 0 4703 Ciclev10032302m 98 0 5012

CsPIP2;4 orange1.1g023370 Cs8g02530 99 0 2968 Ciclev10029003m 99 0 3000

- No Homology No Homology - - - Ciclev10003297m - - -

CsTIP1;1 orange1.1g025548 orange1.1t03005 100 0 2558 Ciclev10012553m 99 0 2558

CsTIP1;2 orange1.1g025600 Cs8g17900 99 0 1976 Ciclev10029134m 99 0 2713

CsTIP1;3 orange1.1g037978 Cs8g17900 97 0 1062 Ciclev10029134m 97 4e-180 632

CsTIP1;4 orange1.1g025464 Cs7g28650 99 0 2351 Ciclev10032534m 99 0 2365

CsTIP2;1 orange1.1g025817 Cs1g15440 97 0 2888 Ciclev10026351m 100 0 3086

CsTIP2;2 orange1.1g025865 Cs1g15440 100 0 3081 Ciclev10026351m 97 0 2879

CsTIP2;3 orange1.1g038895 Cs5g08710 99 0 1293 Ciclev10021867m 99 0 1290

CsTIP3;1 orange1.1g025197 Cs5g17210 100 0 2403 Ciclev10021799m 97 0 2262

CsTIP4;1 orange1.1g025864 Cs4g19580 99 0 2378 Ciclev10009294m 99 0 2392

CsTIP5;1 orange1.1g046726 Cs9g14770 99 0 1237 Ciclev10006865m 99 0 1263

CsTIP6;1 orange1.1g042738 Cs9g14770 100 5E-114 412 Ciclev10006865m 97 0 1346

- No Homology No Homology - - - Ciclev10023306m - - -

CsNIP1;1 orange1.1g023184 Cs2g04370 100 0 3500 Ciclev10016171m 96 0 3231

CsNIP2;1 orange1.1g036721 Cs6g17690 100 0 2016 Ciclev10013768m 97 0 1887

CsNIP2;2 orange1.1g040981 Cs6g17690 98 0 1852 Ciclev10013768m 99 0 1945

CsNIP2;3 orange1.1g040755 Cs2g16610 98 0 2580 Ciclev10017700m 98 0 2580

CsNIP3;1 orange1.1g023102 Cs6g21290 100 0 2017 Ciclev10012382m 97 0 5222

CsNIP4;1 orange1.1g046511 Cs3g20790 100 2.00E-

156

1423 Ciclev10001994m 99 0 3113

CsNIP5;1 orange1.1g035030 Cs1g11150 98 0 1136 Ciclev10026151m 99 0 1409

CsNIP5;2 orange1.1g027840 Cs1g11140 97 0 2396 Ciclev10026151m 99 0 2533

CsNIP6;1 orange1.1g039196 Cs9g06260 100 0 2598 Ciclev10005554m 97 0 2495

- No Homology No Homology - Ciclev10003256m - - -

CsSIP1;1 orange1.1g026039 Cs5g26100 99 0 6557 Ciclev10021916m 99 0 6482

CsSIP1;2 orange1.1g026082 Cs3g01900 100 0 1579 Ciclev10005734m 99 0 1553

CsSIP2;1 orange1.1g026600 Cs6g16190 100 0 1789 Ciclev10012628m 98 0 4933

Page 78: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

65

CsXIP1;1 orange1.1g036381 Cs8g08830 99 0 1170 Ciclev10029916m 99 0 1272

CsXIP1;2 orange1.1g040654 Cs8g08820 100 0 2099 Ciclev10028106m 99 0 2049

CsXIP2;1 orange1.1g045670 Cs8g08810 100 0 2283 Ciclev10028106m 99 0 2208

Page 79: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

66

CAPÍTULO 2

EXPRESSION OF A CITRUS TONOPLAST INTRINSIC

PROTEIN (CsTIP2;1) GENE IMPROVES TOBACCO

PLANT GROWTH, ANTIOXIDANT CAPACITY AND

PHYSIOLOGICAL ADAPTATION UNDER STRESS

CONDITIONS

Page 80: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

67

ABSTRACT

Tonoplast intrinsic proteins (TIPs) are a subfamily of aquaporins (AQPs),

belonging to the major intrinsic protein (MIPs) family. In a previous study,we

have shown thatthe CsTIP2;1expression is upregulated in citrus leaves and in

response to salt and drought stresses, suggesting its potential association

withthe leaf water status in both normal and stress conditions.Here, we show

that the CsTIP2;1 overexpression in transgenic tobacco increases plant growth

under optimal and water- and salt-stress conditions and also significantly

improves the water and oxidative status, photosynthetic capacity, transpiration

rate and water use efficiency of plants subjected to a progressive soil drying.

These results correlated with the enhanced mesophyll cell expansion, midrib

aquiferous parenchyma abundance, H2O2 detoxification and stomatal

conductance observed in the transgenic plants. Taken together, our results

indicate that CsTIP2;1 plays an active role in regulating the water and oxidative

statusrequired for plant growth and adaptation to stressful environmental

conditions and may be potentially useful for engineering tolerance to salinity

and drought stressesin citrus and other crop plants.

Key words: abiotic stress, aquaporin (AQP), major intrinsic protein (MIP),

orange, photosynthesis, reactive oxygen species (ROS).

1. INTRODUCTION

Crop plants are frequently exposed to a range of environmental factors

that adversely affect their growth and productivity. These include physical

factors, such as heat, chilling, freezing, drought and salinity, that collectively

result in water-deficit stress, leading ultimately to the production of reactive

oxygen species (ROS) and the generation of oxidative stress (Slater et al.,

2008). Understanding the basic mechanisms underlying the responses of plants

to water-deficit stress is therefore essential for the development of multistress-

tolerant crop plants.

Page 81: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

68

It has been shown that the plant water status is tightly regulated by

aquaporins (AQPs), which are membrane proteins that act as channels for

water and other small uncharged molecules of great physiological significance,

such as glycerol, urea, boric acid, silicilic acid, hydrogen peroxide (H2O2),

ammonia (NH3) and carbon dioxide (CO2) (Maurel et al., 2008, 2009). AQPs are

part of the large family of major intrinsic proteins (MIPs), found in

microorganisms, plants and animals, which is further subdivided in seven

subfamilies according to their sequence similarity and subcellular localization:

plasma membrane (PIP), tonoplast (TIP), nodulin-like (NIP), small basic (SIP),

GlpF-like (GIP), hybrid (HIP) and X (XIPs) intrinsic proteins (Johanson et al.,

2001; Maurel et al., 2009; Wudick et al., 2009). In plants, the total number of

MIPs is particularly high as compared with animals, with 35 members identified

in the genome of Arabidopsis (Johanson et al., 2001), 36 in maize (Zea mays)

(Chaumont et al., 2001), 33 in rice (Oryza sativa) (Sakurai et al., 2005), 28 in

Vitis vinifera (Fouquet et al., 2008), 56 in Populus trichocarpa (Gupta and

Sankararamakrishnan, 2009), 34in Citrus sinensis and 33 in Citrus clementina

(Martins et al., 2015). Such observation reinforces their critical role in the

regulation of the intrincate flows of water and solutes required for plant growth,

development and adaptive responses to the ever-changing environment.

TIPs represent a subfamily of plant AQPs that are predominantly located

at the tonoplast, although some members are found in membranes of

specialised organelles such as protein storage vacuoles, lytic vacuoles and

small vacuoles (Fleurat-Lessard et al., 2005; Jauh et al., 1998). TIP subfamily

consists of five subgroups regarding their sequence homologies: TIP1 (the

former γTIP), TIP2 (the former dTIP), TIP3 (the former aTIP and bTIP), TIP4

(the former eTIP) and TIP5 (the former zTIP) (Johanson et al., 2001). TIP1

isoforms are preferentially associated with the large lytic/central vacuole,

whereas TIP2s and TIP3s are preferentially associated with vegetative protein

storage vacuoles and seed protein storage vacuoles, respectively (Maurel et al.,

2008). Besides water, members of almost all TIP subclasses are also able to

transport urea and glycerol (Gomes et al., 2009; Wudick et al., 2009). Members

of some TIP subclasses of Arabidopsis have been also demonstrated to

transport gaseous NH3 (AtTIP2;1, AtTIP2;3) (Loqué et al., 2005) and H2O2

(AtTIP1;1, AtTIP1;2 and AtTIP2;3) (Bienert et al.,2007; Dynowski et al., 2008).

Page 82: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

69

TIPs are the most abundant proteins found in the tonoplast, accounting

for up to 40% of total tonoplast protein content (Higuchi et al., 1998). Thus, they

are believed to be responsible for the typically higher water permeability of the

tonoplast in comparison with the plasma membrane. For instance, water

transport in tonoplast vesicles from tobacco suspension cells was 100-fold

higher than that of plasma membrane vesicles (Maurel et al., 1997). It would

allow a rapid movement of water and other small molecules into the vacuole in

order to maintain the osmolality and turgor pressure required for cell expansion

and plant growth in a changing environment. However, reports demonstrating a

casual relationship among TIPs, water status and plant tolerance to abiotic

stresses remain limited and controversial (Peng et al., 2007; Sade et al., 2009;

Wang et al., 2011).

In our previous study, we characterized the complete set of Citrus

species MIPs (CsMIPs) by exploiting the available reference genomes of Citrus

sinensis and C. clementina and identified a TIP2;1 isoform, named CsTIP2;1,

which was highly expressed in citrus leaves and in response to drought and salt

stresses (Martins et al., 2015). Based on these data, we have proposed

CsTIP2;1 as a candidate gene involved in the maintanance of the leaf water

status during normal and stress conditions.Thus, the aim of the present study

was to address the functional characterization of this gene in order to test the

hypothesis of its involvement in the modulation of the leaf water status and

stress tolerance.

2. MATERIALS AND METHODS

2.1CsTIP2;1 cloning and generation of transgenic tobacco

The coding sequence of CsTIP2;1 was amplified from roots of drought-

stressed ‘Rangpur’ lime by RT-PCR, using the primers 5’-

TCCCTATTCTCTAGCTCTTTCTTGA-3’ and 5’-

CAAAGACTTTTTACAACCTCCAAAA-3’, cloned in pGEM-T, and then under

cloned in sense orientation into the SalI/NotI sites of pUC118 under the control

of the CaMV 35S promoter (35S-P) and terminator (35S-T) sequences. The

resulting 35S-P::CsTIP2;1::35S-T expression cassette was then removed from

Page 83: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

70

the pUC118 vector by digestion with PstI and inserted into the same restriction

site of the pCAMBIA2301 vector (Cambia, Australia). This vector contains the

neomycin phosphotransferase II (nptII) selectable marker gene and the beta-

glucuronidase (GUS) uidA scorable marker gene driven by the 35S-P. It was

introduced into the EHA105 Agrobacterium tumefaciens strain by direct DNA

uptake, and used for Agrobacterium-mediated genetic transformation of tobacco

as described previously (Cidade et al., 2012). Several independent transgenic

lines (T0 generation) derived from distinct transformation events were

transferred to soil and grown under standardized greenhouse conditions to

generate seeds by self-pollination. T1 seeds were collected individually from

each T0 plant and screened on plates containing MS medium + 50 mg L-1

kanamycin for analysis of antibiotic-resistant:-susceptible segregation ratio.

GUS histochemical assays (Jefferson et al., 1987) and PCR screening (Cidade

et al., 2012) were used to distinguish between transgenic and nontransgenic

plants.

2.2 RNA extraction and quantitative real-time RT-PCR (qPCR) analysis

Isolation of total RNAs, cDNA synthesis and qPCR analysis of the

transgenic and wild-type (WT) plants were performed as described previously

(Cidade et al., 2012). CsTIP2;1 primers 5’-CGCAGTTGCAATTGGTGCTA-3’

and 5’-GATGCCAGTGAGGATGGTGAT-3’ were used for qPCR analysis. The

actin primers 5’-CATCCCTCAGCACCTTCC-3’ and 5’-

CCAACCTTAGCACTTCTCC-3’ were used for the normalization of qPCR

analysis. Data were obtained from a pool of three biological replicates that were

individually validated.

2.3 Stress treatments

In vitro-grown plants of tobacco (Nicotiana tabacum cv. Havana) were

used in the experiments of Agrobacterium-mediated genetic transformation. The

stress tolerance of WT and transgenic lines was examined in three sets of

experiments. First, the WT and transgenic (T0 generation) plants were

transferred to soil and grown under standardized greenhouse conditions for

Page 84: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

71

three months. Then, five leaf disks (1-cm diameter) were collected from the first

fully expanded leaf from the apex of each three biological replicates and

subjected to dehydration for up to 180 min at room temperature (~22oC). The

fresh weight (FW) of the leaf disks was measured every 30 min using an

analytical balance, and the dehydration rate was determined as the percentage

FW loss relative to the initial weight. At the end of dehydration, the leaf disks

were sampled for H2O2 staining. In the second set of experiments, seven-day-

old WT and transgenic (T1 generation) seedlings were removed from Murashige

and Skoog (MS) germination medium for the WT and MS medium + 50 mg L-1

kanamycin (Sigma, St. Louis, USA) for the transgenic lines and transferred to

MS medium only (control treatment) or MS medium containing 200 mM

mannitol (Vetec, Rio de Janeiro, Brazil) or 150 mM NaCl (Merck, Darmstadt,

Germany). Each treatment contained three replicates composed of fifteen

seedlings for each line. The FW of individual seedlings was measured 20 days

after the treatments. In the third set of experiments, the 30 day-old WT and

transgenic (T2 generation) plants, with an average of 10 to 15 leaves, were

transplanted to 20 L pots, containing soil and washed sand (2:1 ratio), and

maintained in greenhouse under controlled humidity and air temperatures (70 to

80% relative humidity and 25 to 30ºC) for 35 days before the beginning of

drought stress experiment. Thereafter, the pots were closed with aluminum foil

to prevent water loss by evaporation, and a set of 80 plants (4 lines x 2

treatments x 10 biological replicates) subjected to the following treatments: (i)

10 plants in control of each line, in which plants were maintained at leaf

predawn water potential values of -0.2 to -0.4 MPa by irrigation; (ii) 10 plants in

drought of each line, in which the plants were exposed to a progressive soil

water deficit until their leaves reach predawn water potential values of -1.0 to -

1.5 MPa. The leaf predawn water potential was recorded on the third fully

expanded mature leaf from the apex of each plant, between 2 AM and 4 AM,

using a Scholander-type pressure pump (m670, Pms Instrument Co., Albany,

USA). Physiological and growth parameters were measured in individual plants

35 days after the beginning of the experiment (soil matric potentials of -0.1 MPa

and -1.3 MPa for control and drought stress treatments, respectively, as

estimated from the soil water retention curve).

Page 85: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

72

2.4 Analysis of H2O2 accumulation

In situ accumulation of H2O2 was examined based on histochemical 3,3′-

diaminobenzidine (DAB) staining as described (Thordal-Christensen et al.,

1997). Five leaf disks from each three biological replicates of the WT and

transgenic plants were immersed in 1 mg ml-1 DAB solution (pH 7.5) and

infiltrated using vacuum for 4 h. Leaf disks of control treatments were vacuum

infiltrated with water alone or H2O2 plus DAB. After incubation in room

temperature, samples were boiled in a solution containing 96% ethanol for 20

min and rinsed twice with 50% ethanol. Observations and photographic

documentation were done using a magnifying glassLeica EZ4D (Leica

Microsystems, Wetzlar, Germany).

2.5 Leaf anatomy

Leaf samples were collected from the third leaf from the apex of WT and

transgenic plants maintained for three months under standardized greenhouse

conditions. Samples of the median portion of the leaf blade were fixed in FAA

70 (Johansen, 1940) and stored in 70% (v/v) etanol. Samples were then

dehydrated in a graded ethanol series and embedded in methacrylate

(HistoResin, Leica), as described by Feder and O'Brien (1968). The material

was sectioned at 10 μm using a rotary microtome and sections were stained

with toluidine blue (Feder and O'Brien, 1968). Anatomical featureswere

measured, including adaxial epidermis, abaxial epidermis, palisade parenchyma

and spongy parenchyma. Observations and photographic documentation were

done using a photonic microscope Leica DM 300 (Leica Microsystems, Wetzlar,

Germany). Three biological replicates were used, each containing three slides.

2.6 H2O2 sensitivity assay of leaves

Photosynthetically active leaves from WT and transgenic plants were

excised and the petioles were immediately dipped in 5%, 10% and 20% H2O2

solutions and subjected to vacuum infiltration for 20 min. Leaves were then

incubated in a growth chamber for 48 h at 26±2oC under 16-h photoperiod. The

Page 86: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

73

extent of necrosis was recorded 24 and 48 h after the treatments. Each

treatment was composed of five replicates and the experiment was repeated

twice.

2.7 Physiological and growth analyses

Control (irrigated) and drought-stressed WT and transgenic (T2

generation) plants were subjected to physiological and growth analyses, which

included net CO2 assimilation rate (A), stomatal conductance to water vapor

(gs), leaf transpiration rate (E), instantaneous water use efficiency (WUE; A/E),

leaf relative water content (RWC), plant height, root collar diameter, root

volume, root length and root fresh and dry biomass. A, gs and E were measured

in the morning (08:00 - 09:00 AM) using a portable photosynthesis system LI-

6400 (Li-Cor) equipped with an artificial light resource (6400-02B RedBlue). All

measurements were made on the third, fully expanded mature leaf from the

apex of five biological replicates of each WT and transgenic lines. The artificial

light source was adjusted to provide a photosynthetic photon flux density of

1000 μmol m-2 s-1, above the saturation irradiance of N. tabacum. CO2 flux and

temperature were adjusted to maintain a concentration of 380 μmol mol-1 CO2

and 26°C inside the leaf chamber. The minimum pre-established time for

reading stabilization was set at 60 s and the maximum to save each reading, at

120 s. The maximum admitted coefficient of variation to save each reading was

0.3%. The parameters net CO2 assimilation rate (A) and transpiration rate (E)

were used to calculate the instantaneous WUE, the amount of CO2 fixed per

unit amount water lost by transpiration. The leaf relative water content (RWC)

was measured in six 0.5 cm diameter discs collected from the third, fully

expanded mature leaf from the apex of three biological replicates of each WT

and transgenic lines. The leaf discs were immediately weighed, floated on

distilled water at 28°C in the dark for 24 h, blotted, weighed again and finally

dried at 60°C for 48 h for dry weight determination. The leaf RWC was

determined as follows: RWC = (fresh weight – dry weight)/(turgid weight – dry

weight) ´ 100. Plant height and root length were measured in five biological

replicates using a ruler, while the root collar diameter was measured using a

calliper. Root volume was measured using the intact root system to displace the

Page 87: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

74

water column in a graduated cylinder. Roots were weighed to obtain fresh

biomass and dried at 60 °C for 48 h to obtain dry biomass.

2.8 Statistical analysis

Statistical analysis was carried out with the software BIOESTAT

(Universidade Federal do Pará, Brazil), which tested the experiments as a

completely randomized design. Statistical differences were assessed based on

the analysis of variance (ANOVA) and means were separated by Dunnett test,

with a critical value of p≤ 0.05, p≤ 0.01 and p≤ 0.001. Segregation patterns were

analyzed using the Chi-square test (χ 2) against the expected Mendelian ratios

of 3:1 or 15:1 for single- or double-locus insertion, respectively.

3 RESULTS

3.1 Overexpression of CsTIP2;1 in transgenic tobacco

To analyze the biological functions of CsTIP2;1, transgenic tobacco

plants overexpressing CsTIP2;1 were produced. Several independent

regenerants on kanamycin-containing medium, representing distinct

transformation events, were screened for the presence of the transgene by

GUS histochemical assay (S1a Fig.) and PCR (S1b Fig.). All the PCR-positive

transgenic lines expressed CsTIP2;1 at relatively high and varying levels, as

revealed by the qPCR analysis (S1c Fig.). The transgenic plants exhibited a

normal phenotype and were fertile. Segregation analysis of the nptII gene in the

T1 generation, based on the observed frequencies of kanamycin-resistant and -

susceptible T1 seeds, demonstrated that the transgene was integrated into the

genome of transgenic lines as a single locus (S1 Table). Transgenic lines

overexpressing CsTIP2;1 at varying levels were selected for further analysis.

3.2CsTIP2;1-overexpressing tobacco plants show enhanced tolerance to

dehydration

Page 88: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

75

WT and transgenic lines were subjected to short-term dehydration to

investigate whether the CsTIP2;1 overexpression correlates with stress

tolerance. Leaf disks of both WT and transgenic lines showed a steady

decrease in FW when they were dehydrated in an ambient environment.

However, at any time point after 30 min (L8) or 60 min (L1, L9 and L12) of

dehydration, the transgenic lines lost remarkably less water than the WT (Fig.

1a).At the end of 180 min of dehydration, the turgor differences between the WT

and transgenic lines were of significantly greater magnitude. These findings

sugests that the transgenic lines were more tolerant to dehydration.

3.3 Dehydration tolerance of CsTIP2;1-overexpressing transgenic lines

correlates with the inhibition of H2O2 accumulation

Since water leakage may also reflect the extent of membrane damage

caused by oxidative stress, it was of interest to determine the ROS

accumulation in the WT and transgenic lines after dehydration stress.

Histochemical staining by DAB was used to reveal in situ accumulation of H2O2

(Fig. 1b). Before dehydration, leaf disks of WT plants were stained less

intensely and mainly at the periphery, as a result of wounding. The intensity of

staining has increased when the WT leaf disks were treated with H2O2. After

180 min dehydration, the leaf disks of WT plants were more heavily stained

throughout and clearly distinct from the transgenic lines, which exhibited

significantly less intense DAB staining. Taken together, these data suggest that

there is a strict relationship between the inhibition of H2O2 accumulation and the

tolerance of CsTIP2;1-overexpressing transgenic lines to dehydration stress.

Page 89: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

76

Fig.1.Overexpression of CsTIP2;1 enhances the dehydration tolerance in

transgenic tobacco. (a) Relative dehydration rate in the WT and transgenic

lines (L1, L8, L9 and L12) under dehydration for 180 min in an ambient

environment, as measured by the reduction of fresh weight (FW) every 30 min.

Statistically significant differences at p≤0.05 (*) and p≤0.01 (**) between WT

and transgenic lines, at the same time point, are indicated. (b) In situ

accumulation of H2O2 in leaf disks from the WT and transgenic lines under

dehydration stress, as measured by histochemical staining with DAB.

Representative photographs showing staining of H2O2 in leaf disks of WT (180

min) and transgenic lines (L1, L8, L9 and L12) after 180 min dehydration. WT

leaf disks before (0 min) dehydration and treated with H2O2 or only H2O (without

DAB) were used as control treatments.

3.4CsTIP2;1-overexpressing tobacco plants show improved tolerance to

water and salt stresses

The WT and transgenic lines were also subjected to long-term water- and

salt-stress treatments to assess the effect of CsTIP2;1 overexpression on stress

tolerance. Seven-day-old seedlings of WT and transgenic lines were

transplanted onto MS medium containing NaCl or mannitol, or MS medium

Page 90: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

77

alone as a control, and maintained for 20 days. After the treatments, the

transgenic lines developed significantly higher fresh weights than the WT under

both normal (control) and stress growth conditions (Fig. 2).Under control

conditions, the seedling biomass of the transgenic lines was 1.7- to 2-´ higher

than the WT, except for L9. However, the biomass differences between all

transgenic lines tested and WT drastically increased from ~3- to 5-´ under

stress conditions. These results indicate that the overexpression of CsTIP2;1

had a significant effect on the improvement of plant growth and water- and salt-

stress tolerance.

Fig.2.Performance of WT and CsTIP2;1-overexpressing transgenic lines

under normal (control) and stress (salt or mannitol) growth conditions.

WT and transgenic (L1-L12) seedlings were transplanted onto MS medium

containing 200 mM mannitol, 150 mM NaCl, or MS medium only (control) and

the fresh weight of individual seedlings was measured 20 days after the

treatments. The data are means ± SE of three technical replicates composed of

five seedlings for each line. Statistically significant differences at P≤0.01 (**)

between WT and transgenic lines, at the respective stress treatment, are

indicated.

Page 91: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

78

3.5CsTIP2;1 overexpression improves tobacco growth, photosynthetic

capacity and WUE under drought stress

To dissect the physiological mechanisms of drought stress tolerance

induced by the CsTIP2;1 overexpression, WT and transgenic lines were also

grown in pots under greenhouse conditions and then exposed to a progressive

water deficit for 35 days, until reach leaf water potentials of ~-1.5 MPa, or

watered to soil field capacity daily as a control. After the treatments, the

CsTIP2;1 transgenic lines displayed distinctive drought resistance as compared

with the WT, which showed leaf rolling, wilting and drying symptoms (Fig. 3A).

Interestingly, the transgenic lines also exhibited a more developed root system

than the WT under drought stress (Fig. 3B). Analyses of growth confirmed that

drought-stressed CsTIP2;1 transgenic plants had significantly higher height,

root collar diameter, root volume, root length and root fresh and dry

biomass(Fig. 4).

Analysis of the leaf RWC revealed that drought-stressed CsTIP2;1

transgenic lines were able to maintain 80-90% of the leaf RWC of their control

counterparts. However, the leaf RWC of drought-stressed WT plants dropped to

more than 50% of that of the non-stressed (control) WT (Fig. 5). These results

seem to be consistent with theincreased size of theirpalisade parenchyma cells

as compared with the WT (see Fig. 8).

Photosynthetic gas exchange parameters showed that the drought-

stressed CsTIP2;1 transgenic lines were also able to maintain significantly

higher rates of A and E compared with the drought-stressed WT (Fig. 5). These

data correlated with the increased gs values found in drought-stressed CsTIP2;1

transgenic lines (Fig. 5). Higher rates of photosynthesis associated with the

non-corresponding increase in transpiration levels resulted in a significant 40-

70% increment in the instantaneous WUE (A/E) in two out of three drought-

stressed CsTIP2;1 transgenic lines (Fig. 5). Taken together, these results

indicate thatCsTIP2;1 overexpression improves growth, photosynthetic capacity

and WUE in the transgenic plants by maintaining a better water status of roots

and leaves and an increased stomatal conductance under drought stress

conditions.

Page 92: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

79

Fig.3.Phenotype of drought-stressed WT (left) and CsTIP2;1-

overexpressing transgenic lines (right). Pictures of the aerial part (A) and

roots (B) were taken 35 days after the beginning of drought stress experiment.

See materials and methods for further details.

Page 93: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

80

Fig.4.Growth analyses of WT and CsTIP2;1-overexpressing transgenic

lines under control (irrigated) and drought-stress conditions. WT and

transgenic (L1-L9) plants grown under greenhouse conditions were exposed to

a progressive soil water deficit until reach leaf water potentials of ~-1.5 MPa, or

maintained at leaf water potentials of -0.2 to -0.4 MPa as the control (irrigated)

treatment. Growth parameters were measured in individual plants 35 days after

Page 94: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

81

the treatments. The data are means ± SE of five biological replicates.

*Significantly different from drought-stressed WT at P£0.05.

Fig.5.Physiological responses of WT and CsTIP2;1-overexpressing

transgenic lines. WT and transgenic (L1-L9) plants were exposed to control

(well-watered) and drought-stress conditions as depicted in the legend of Fig. 4.

Physiological parameters were measured in individual plants 35 days after the

treatments. The data are means ± SE of five biological replicates.

*,**Significantly different from drought-stressed WT at P£0.05 or P£0.01,

respectively.

Page 95: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

82

3.6CsTIP2;1 overexpression promotes mesophyll cell expansion and

aquiferous parenchyma differentiation

To analyze the effects of CsTIP2;1 overexpression at the anatomical level,

leaf cross-sections of the WT and transgenic plants were collected and

visualized under a photonic microscope. The leaf thickness and anatomy were

significantly altered by the overexpression of CsTIP2;1 (Figs.6 and 7). The

transgenic plants showed a significant increase in the size of palisade (and also

spongy for L1) parenchyma cells as compared with the WT (Fig. 8). The

transgenic plants also exhibited, in comparison with WT, epidermis cells of

altered shape in the adaxial and/or abaxial face of leaves (Fig. 6). More

interestingly, the transgenic plants displayed the presence of abundant

aquiferous parenchyma cells over the midrib (Fig. 7), an anatomical

modification never reported before in AQP-overexpressing transgenic plants.

Fig.6.Leaf cross-section of WT (A) and the CsTIP2;1-overexpressing

transgenic lines L1 (B), L8 (C) and L9 (D), observed under photonic

microscope. ep, epidermis cells; st, stomata; pp, palisade parenchyma; sp,

spongy parenchyma; ci, crystal idioblasts. Arrow indicates the cuticle.

Magnification bars represent 100 µm.

Page 96: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

83

Fig.7.Cross-section of the leaf midrib vein of WT (A) and the CsTIP2;1-

overexpressing transgenic lines L1 (B), L8 (C) and L9 (D), observed under

photonic microscope. pa, aquiferous parenchyma; ci, crystal idioblasts; xy,

xylem cells. Magnification bars represent 200 µm.

Page 97: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

84

Fig.8.Quantitative analysis of the anatomy of leaf cross-section of WT and

the transgenic lines L1, L8 and L9; epidermis; palisade parenchyma;

spongy parenchyma; mesophyll. The data are means ± SE of three technical

replicates, each containing three slides composed for each line. Statistically

significant differences at P≤0.05 (*) and P≤0.01 (**) between WT and transgenic

lines.

3.7 CsTIP2;1 expression increases the resistance of transgenic tobacco to

exogenous H2O2 application

Since the WT and transgenic lines differed in their resistance toward

oxidative stress, we considered the possibility that CsTIP2;1 could permeate

H2O2 across the tonoplast for further detoxification. Thus, we tested the effects

of the exogenous application of different H2O2 concentrations in

photosynthetically active leaves of WT and transgenic plants. After 24 h, H2O2-

treated leaves of the transgenic plants did not exhibit the typical symptoms of

necrosis, starting near the base and then proceeding to the apex of the leaves,

as did the WT plants (Fig. 9). Leaves of the transgenic plants were more

resistant to H2O2 even 48 h after treatment, when WT leaves turned necrosed in

a great extent (Fig. 9). These results suggest that CsTIP2;1 contributes to

detoxification of excess amounts of H2O2 in the cytosol.

Page 98: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

85

Fig.9. Sensitivity of tobacco plants to H2O2-induced necrosis.

Photosynthetically active leaves of WT and CsTIP2;1-overexpressing

transgenic plants were treated with 5%, 10% and 20% H2O2 solutions.

Symptoms were recorded 24 h and 48 h after the treatments. Representative

results of experiments performed in five replicates are shown.

4 DISCUSSION

Transgenic lines overexpressing CsTIP2;1 at high and varying levels

(Fig. S1) exhibited significantly improved tolerance to either short- (dehydration)

(Fig. 1a) or long-term (water-deficit and salt) (Fig. 2) stresses as compared with

the WT.

The transgenic seedlings were able to accumulate larger biomass than

the WT under both favorable (control) and stress (mannitol, salt) conditions (Fig.

2). Such an observation can be explained by the enhanced mesophyll cell

expansion found in the CsTIP2;1-overexpressing transgenic lines (Fig. 6). The

central vacuole occupies as much as 90% of the volume in fully elongated cells

and its enlargement depends on the transport of osmotically active substances

and water influx across the tonoplast (Wudick et al., 2009). This influx

generates turgor pressure that drives cell expansion. Thus, the increased ratio

of vacuole per cytoplasm is believed to be the cause of the enhanced mesophyll

cell expansion, plant growth and beneficial adaptation of CsTIP2;1-

overexpressing transgenic plants to salt and water-deficit stresses, since their

larger cells can also be able to sequester greater amounts of toxic compounds

in relatively larger vacuolar compartments (Peng et al., 2007). Consistent with

this interpretation are the emerging studies reporting a causal relationship

between TIP expression and cell elongation. For instance, the overexpression

of a cauliflower TIP1-GFP fusion in tobacco suspension cells led to a two-fold

increase in cell surface (Reisen et al., 2003), while the overexpression of an

NtTIP1;1-GFP construct in tobacco BY-2 protoplasts increased 24% their

expansion rate (Okubo-Kurihara et al., 2009). A related result has been

obtained at the whole-plant level in Arabidopsis, which showed significantly

increased growth of vegetative (roots, leaves) and reproductive (seeds) organs

by overexpressing the PgTIP1;1 from Panax ginseng (Lin et al., 2007). These

Page 99: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

86

observations suggest that TIP activity has direct effects on vacuolar and cellular

expansion.

The CsTIP2;1-overexpressingtransgenic lines were observed to retain

their growth advantage when exposed to an adverse situation that they would

face in the field, of progressive soil drying (Figs. 3 and 4). Comparisons of the

root fresh and dry biomass (Fig. 4), as well as of the leaf RWC (Fig. 5), between

drought-stressed WT and CsTIP2;1-transgenic lines further confirm that the

improved growth of the transgenic plants under drought was due to the better

water status of their roots and leaves. Consistent with these findings was the

unusual observation that CsTIP2;1 overexpression drastically increased the

presence of midrib aquiferous parenchyma in the transgenic plants (Fig. 7). To

the best of our knowledge, such AQP-induced anatomical modification has

never been reported before, although the preferential expression of some AQPs

in vascular-associated tissues and cells types has been described in several

plant species (see Prado and Maurel, 2013). AQP expression in these sites has

been interpreted as crucial for the radial cell-to-cell water movement during exit

from the xylem vessels (Prado et al., 2013) and for the osmotically driven water

loading in xylem vessels during embolism refilling (Sakr et al., 2003; Secchi and

Zwieniecki, 2010). Altogether, our data provide functional evidence about the

role of CsTIP2;1 in water compartmentation, which is essential for turgor-driven

cell expansion and cell water status maintenance that ultimately promote plant

growth and drought resistance.

Our results also show that CsTIP2;1 overexpression has significantly

increased A, E, gs and WUE in the transgenic plants under soil drying (Fig. 5).

Since the stomatal conductance regulates A, E and WUE, improvement in these

components were caused by the changed stomatal behavior in the transgenic

plants. A role of aquaporins in the regulation of stomata movement has long

been suggested based on observations that the expression of specific AQPs,

including TIPs, was high or water stress-induced in guard cells (Fraysse et al.,

2005; Kaldenhoff et al., 1995; Otto and Kaldenhoff, 2000; Sarda et al., 1997;

Sun et al., 2007). However, only recently that a direct relationship between AQP

expression and stomatal movement has emerged. The initial studies showed

increased gs in NtAQP1-overexpressing transgenic tobacco and decreased gs in

NtAQP1-antisense lines growing under favorable conditions (Flexas et al.,

Page 100: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

87

2006; Uehlein et al., 2003). A similar result has been obtained in rice

overexpressing the barley aquaporin HvPIP2;1 (Hanba et al., 2004). Tomato

plants overexpressing the tobacco aquaporin NtAQP1 also showed significantly

increased gs, transpiration and stomatal aperture under both normal and salt-

stress conditions (Sade et al.,2010). More recently, tobacco plants

overexpressing the ice plant aquaporin McMIPB were observed to show less

significant decreases in the photosynthetic rate and stomatal conductance than

the WT plants under soil water deficit conditions (Kawase et al., 2013). The

impact of AQPs on guard cells has been related to their direct effects in

transporting CO2 (Flexas et al., 2006; Uehlein et al., 2003) and water (Sade et

al., 2010), with the latter affecting stomatal aperture via changes in turgor

pressure of guard cells.

Interestingly, the enhanced dehydration tolerance in the transgenic lines

was correlated with the inhibition of H2O2 accumulation, as revealed by the

histochemical DAB staining analysis (Fig. 1b). We then postulated that

CsTIP2;1 might be involved in H2O2 detoxification, since functional studies

based on in vitro yeast-survival and -fluorescence transport assays have

recently shown that some plant TIPs are able to specifically conduct H2O2 (Azad

et al., 2012; Bienert et al., 2007; Dynowski et al., 2008). Our in vivo H2O2

sensitivity assay revealed that the transgenic lines were in fact more resistant to

H2O2 than the WT (Fig. 9), suggesting that CsTIP2;1 plays a function in the

subcellular partitioning of H2O2. Such a role is further supported by the fact that

CsTIP2;1 contains the typical signature sequences of H2O2 transporter MIPs

(Hove and Bhave, 2011), such as H-I-G-R in the ar/R filter and T-S-A-Y-W at

the P1-P5 positions (Martins et al., 2015).Although some TIPs from plants have

been recently shown to permeate H2O2 (Azad et al., 2012; Bienert et al., 2007;

Dynowski et al., 2008), the physiological role of H2O2 permeability across the

tonoplast still remains unclear (Dynowski et al., 2008). Yet, it is well known that

stressed plants must maintain their ROS pools at low levels in order to minimize

the cellular damage caused by oxidative stress (Harb et al., 2010; Foyer and

Shigeoka, 2011; Miller et al., 2010). It is also well documented that ROS

accumulation depends greatly on the balance between production and

concurrent scavenging by non-enzymatic (i.e., ascorbate, glutathione, a-

tocopherol, carotenoids and flavonoids) as well as enzymatic [i.e., superoxide

Page 101: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

88

dismutases (SOD), catalases (CAT), ascorbate peroxidases (APX), guaiacol

peroxidases (POX), glutathione peroxidases (GPX), glutathione reductases

(GR) and glutathione-S-transferases (GST)] antioxidants (Buchanan and

Balmer, 2005). Based on our findings, we propose that TIPs may provide

another important mechanism of H2O2 detoxification by translocating this

reactive oxygen species into vacuoles, which possess a powerful scavenging

system involving the activities of peroxidases and flavonoids (Bienert et al.,

2006).

5 CONCLUSIONS

In conclusion, the results from this study suggest that CsTIP2;1 plays a

role in plant growth and adaptation to salt and drought stresses by a

combination of three mechanisms: (i) water permeation, resulting in increased

water and salt compartmentation and turgor-driven cell expansion; (ii) H2O2

detoxification, thus attenuating the stress-induced oxidative damage; and, (iii)

stomatal opening, contributing to higher photosynthetic carbon assimilation,

transpiration and water use efficiency. Although these mechanisms cannot work

under very severe drought scenarios, they will probably provide some degree of

homeostasis required for plant growth and productivity in naturally occurring dry

scenarios compatible with agriculture.

6 ACKNOWLEDGMENTS

This work was supported by research grants from Embrapa

(Macroprograma 2), CNPq (Brasília, Brazil) and FAPESP (São Paulo, Brazil).

We gratefully acknowledge the Ph.D. Degree scholarship to C.P.S. Martins by

CAPES (Brasília, Brazil).

7 REFERENCES

Azad AK, Yoshikawa N, Ishikawa T, Sawa Y, Shibata H. 2012. Substitution of

a single amino acid residue in the aromatic/arginine selectivity filter alters the

Page 102: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

89

transport profiles of tonoplast aquaporin homologs. Biochimica et Biophysica

Acta 1818, 1-11.

Bansal A, Sankararamakrishnan R. 2007. Homology modeling of major

intrinsic proteins in rice, maize and Arabidopsis: comparative analysis of

transmembrane helix association and aromatic/arginine selectivity filters. BMC

Structural Biology7, 27.

Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring

JK, Jahn TP. 2007. Specific aquaporins facilitate the diffusion of hydrogen

peroxide across membranes. Journal of Biological Chemistry282, 1183-1192.

Bienert GP, Schjoerring JK, Jahn TP. 2006. Membrane transport of hydrogen

peroxide. Biochimica et Biophysica Acta1758, 994-1003.

Buchanan BB, Balmer Y. 2005. Redox regulation: a broadening horizon.

Annual Review of Plant Biology56, 187-220.

Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R. 2001. Aquaporins

constitute a large and highly divergent protein family in maize. Plant

Physiology125, 1206-1215.

Cidade LC, de Oliveira TM, Mendes AFS, Macedo AF, Floh EIS, Gesteira

AS, Soares-Filho WS, Costa MGC. 2012. Ectopic expression of a fruit

phytoene synthase from Citrus paradisi Macf. promotes abiotic stress tolerance

in transgenic tobacco. Molecular Biology Reports39, 10201-10209.

Daniels MJ, Chaumont F, Mirkov TE, Chrispeels MJ. 1996. Characterization

of a new vacuolar membrane aquaporin sensitive to mercury at a unique site.

ThePlant Cell8, 587-599.

de Oliveira TM, Cidade LC, Gesteira AS, Coelho-Filho MA, Soares-Filho

WS, Costa MGC. 2011. Analysis of the NAC transcription factor gene family in

citrus reveals a novel member involved in multiple abiotic stress responses.

Tree Genetics and Genomes7, 1123-1134.

Dynowski M, Schaaf G, Moran O, Ludewig U. 2008. Plant plasma membrane

water channels conduct the signalling molecule H2O2. Biochemical Journal414,

53-61.

Feder N, O'Brien TP. 1968. Plant microtechnique: some principles and new

methods. American Journal of Botany55, 123-142.

Fleurat-Lessard P, Michonneau P, Maeshima M, Drevon J-J, Serraj R.

2005. The distribution of aquaporin subtypes (PIP1, PIP2 and g-TIP) is tissue

Page 103: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

90

dependent in soybean (Glycine max) root nodules. Annals of Botany96, 457-

460.

Flexas J, Ribas-Carbo M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N,

Medrano H, Kaldenhoff R. 2006. Tobacco aquaporin NtAQP1 is involved in

mesophyll conductance to CO2 in vivo. ThePlant Journal48, 427-439.

Fouquet R, Le´on C, Ollat N, Barrieu F. 2008. Identification of grapevine

aquaporins and expression analysis in developing berries. Plant Cell Reports27,

1541-1550.

Foyer CH, Shigeoka S. 2011. Understanding oxidative stress and antioxidant

functions to enhance photosynthesis. Plant Physiology155, 93-100.

Fraysse LC,Wells B, McCann MC, Kjellbom P. 2005. Specific plasma

membrane aquaporins of the PIP1 subfamily are expressed in sieve elements

and guard cells. Biology of the Cell97, 519-534.

Fujiyoshi Y, Mitsuoka K, de Groot BL, Philippsen A, Grubmuller H, Agre P,

Engel A. 2002. Structure and function of water channels. Current Opinion in

Structural Biology12, 509-515.

Gerbeau P, Guclu J, Ripoche P, Maurel C. 1999. Aquaporin Nt-TIPa can

account for the high permeability of tobacco cell vacuolar membrane to small

neutral solutes. The Plant Journal18, 577-587.

Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H, Chaumont F. 2009.

Aquaporins are multifunctional water and solute transporters highly divergent in

living organisms. Biochimica et Biophysica Acta1788, 1213-1228.

Gupta AB, Sankararamakrishnan R. 2009. Genome-wide analysis of major

intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP

subfamily of aquaporins from evolutionary perspective. BMC Plant Biology9,

134.

Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I,

Katsuhara M. 2004. Overexpression of the barley aquaporin HvPIP2;1

increases internal CO2 conductance and CO2 assimilation in the leaves of

transgenic rice plants. Plant and Cell Physiology45, 521-529.

Harb A, Krishnan A, Ambavaram MMR, Pereira A. 2010. Molecular and

physiological analysis of drought stress in Arabidopsis reveals early responses

leading to acclimation in plant growth. Plant Physiology154, 1254-1271.

Page 104: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

91

Higuchi T, Suga S, Tsuchiya T, Hisada H, Morishima S, Okada Y,

Maeshima M. 1998. Molecular cloning, water channel activity and tissue

specific expression of two isoforms of radish vacuolar aquaporin. Plant and Cell

Physiology39, 905-913.

Hove RM, Bhave M.2011. Plant aquaporins with non-aqua functions:

deciphering the signature sequences. Plant Mol Biol75: 413-430.Hub JS, de

Groot BL. 2008. Mechanism of selectivity in aquaporins and

aquaglyceroporins. Proceedings of the National Academy of Sciences,

USA105, 1198-1203.

Jahn TP, Møller ALB, Zeuthen T, Holm LM, Klærke DA, Mohsin B,

Kühlbrandt W, Schjoerring JK. 2004. Aquaporin homologues in plants and

mammals transport ammonia. FEBS Letters574, 31-36.

Jauh GY, Fischer AM, Grimes HD, Ryan CA, Rogers JC. 1998. δ-Tonoplast

Intrinsic Protein defines unique plant vacuole functions. Proceedings of the

National Academy of Sciences, USA95, 12995-12999.

Jefferson RA, Kavanagh TA, Bevan MW. 1987. GUS fusions: beta-

glucuronidase as a sensitive and versatile gene fusion marker in higher plants.

EMBO Journal6, 3901-3907.

Johansen DA. 1940. Plant microtechnique. New York: MacGraw Hill Book. 523

p.

Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse

L, Weig AR, Kjellbom P. 2001. The complete set of genes encoding major

intrinsic proteins in Arabidopsis provides a framework for a new nomenclature

for major intrinsic proteins in plants. Plant Physiology126, 1358-1369.

Kaldenhoff R, Kolling A, Meyers J, Karmann U, Ruppel G, Richter G. 1995.

The blue light-responsive AthH2 gene of Arabidopsis thaliana is primarily

expressed in expanding as well as in differentiating cells and encodes a

putative channel protein of the plasmalemma. The Plant Journal7, 87-95.

Kawase M, Hanba YT, Katsuhara M. 2013. The photosynthetic response of

tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water

deficit and high vapor pressure deficit. Journal of Plant Research126, 517-527.

Lagree V, Froger A, Deschamps S, Hubert JF, Delamarche C, Bonnec G,

Thomas D, Gouranton J, Pellerin I. 1999. Switch from an aquaporin to a

Page 105: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

92

glycerol channel by two amino acids substitution. Journal of Biological

Chemistry274, 6817-6819.

Li GW, Peng YH, Yu X, Zhang MH, Cai WM, Sun WN, Su WA. 2008.

Transport functions and expression analysis of vacuolar membrane aquaporins

in response to various stresses in rice. Journal of Plant Physiology165, 1879-

1888.

Lin WL, Peng YH, Li GW, Arora R, Tang ZC, Su WA, Cai WM. 2007. Isolation

and functional characterization of PgTIP1, a hormone autotrophic cells-specific

tonoplast intrinsic protein in ginseng. Journal of Experimental Botany58, 947-

956.

Liu LH, Ludewig U, Gassert B, Frommer WB, von Wirén N. 2003. Urea

transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant

Physiology133, 1220-1228.

Loqué D, Ludewig U, Yuan L, von Wirén N. 2005. Tonoplast intrinsic proteins

AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant

Physiology137, 671-680.

Martins CPS, Pedrosa AM, Du D, Gonçalves LP, Yu Q, Gmitter FG Jr, et al.

2015. Genome-Wide Characterization and Expression Analysis of Major

Intrinsic Proteins during Abiotic and Biotic Stresses in Sweet Orange (Citrus

sinensis L. Osb.). PLoS ONE10(9): e0138786.

Maurel C, Santoni V, Luu D-T, Wudick MM, Verdoucq L. 2009. The cellular

dynamics of plant aquaporin expression and functions. Current Opinion in Plant

Biology12, 690-698.

Maurel C, Tacnet F, Güclü J, Guern J, Ripoche P. 1997. Purified vesicles of

tobacco cell vacuolar and plasma membranes exhibit dramatically diferente

water permeability and water channel activity. Proceedings of the National

Academy of Sciences, USA94, 7103-7108.

Maurel C, Verdoucq L, Luu D-T, Santoni V. 2008. Plant aquaporins:

membrane channels with multiple integrated functions. Annual Review of Plant

Biology59, 595-624.

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species

homeostasis and signaling during drought and salinity stresses. Plant, Cell and

Environment33, 453-457.

Page 106: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

93

Neves DM, Coelho-Filho MA, Bellete BS, Silva MFGF, Souza DT, Soares-

Filho WS, Costa MGC, Gesteira AS. 2013. Comparative study of putative 9-

cis-epoxycarotenoid dioxygenase and abscisic acid accumulation in the

responses of Sunki mandarin and Rangpur lime to water deficit. Molecular

Biology Reports40, 5339-5349.

North GB, Martre P, Nobel PS. 2004. Aquaporins account for variations in

hydraulic conductance for metabolically active root regions of Agave deserti in

wet, dry, and rewetted soil. Plant, Cell and Environment27, 219-228.

Okubo-Kurihara E, Sano T, Higaki T, Kutsuna N, Hasezawa S. 2009.

Acceleration of vacuolar regeneration and cell growth by overexpression of an

aquaporin NtTIP1;1 in tobacco BY-2 cells. Plant and Cell Physiology50, 151-

160.

Otto B, Kaldenhoff R. 2000. Cell-specific expression of the mercury-insensitive

plasma-membrane aquaporin NtAQP1 from Nicotiana tabacum. Planta211,

167-172.

Peng Y, Lin W, Cai W, Arora R. 2007. Overexpression of a Panax ginseng

tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation

ability in transgenic Arabidopsis plants. Planta226, 729-740.

Prado K, Boursiac Y, Tournaire-Roux C, Monneuse JM, Postaire O, Da

Ines O, Schäffner AR, Hem S, Santoni V, Maurel C. 2013. Regulation of

Arabidopsis leaf hydraulics involves light-dependent phosphorylation of

aquaporins in veins. The Plant Cell25, 1029-1039.

Prado K, Maurel C. 2013. Regulation of leaf hydraulics: from molecular to

whole plant levels. Frontiers in Plant Science4, 255.

Reisen D, Leborgne-Castel N, Özalp C, Chaumont F, Marty F. 2003.

Expression of a cauliflower tonoplast aquaporin tagged with GFP in tobacco

suspension cells correlates with an increase in cell size. Plant Molecular

Biology52, 387-400.

Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion

M. 2010. The role of tobacco Aquaporin1 in improving water use efficiency,

hydraulic conductivity, and yield production under salt stress. Plant

Physiology152, 245-254.

Sakr S, Alves G, Morillon R, Maurel K, Decourteix M, Guilliot A, Fleurat-

Lessard P, Julien JL, Chrispeels MJ. 2003. Plasma membrane aquaporins

Page 107: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

94

are involved in winter embolism recovery in walnut tree. Plant Physiology133,

630-641.

Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M. 2005.

Identification of 33 rice aquaporin genes and analyses of their expression and

function. Plant and Cell Physiology45, 1568-1577.

Sarda X, Tousch D, Ferrare K, Legrand E, Dupuis JM, CasseDelbart F,

Lamaze T. 1997. Two TIP-like genes encoding aquaporins are expressed in

sunflower guard cells. The Plant Journal12, 1103-1111.

Secchi F, Zwieniecki MA. 2010. Patterns of PIP gene expression in Populus

trichocarpa during recovery from xylem embolism suggest a major role for the

PIP1 aquaporin subfamily as moderators of refilling process. Plant, Cell and

Environment33, 1285-1297.

Slater A, Scott NW, Fowler MR. 2008. Plant biotechnology: the genetic

manipulation of plants, 2nd edn. New York: Oxford University Press Inc. 376 p.

Soto G, Alleva K, Mazzella MA, Amodeo G, Muschietti JP. 2008. AtTIP1;3

and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins,

transport water and urea. FEBS Letters582, 4077-4082.

Sui H, Han BG, Lee JK, Walian P, Jap BK. 2001. Structural basis of water-

specific

transport through the AQP1 water channel. Nature414, 872-878.

Sun MH, Wen X, Zhu YF, Su WA, Tang ZC. 2007. A simple method for in situ

hybridization to RNA in guard cells of Vicia faba L.: the expression of

aquaporins in guard cells. Plant Molecular Biology Reporter19, 129-135.

Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB. 1997. Subcellular

localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive

response during the barley-powdery mildew interaction. The Plant Journal11,

1187-1194.

Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R. 2003. The tobacco aquaporin

NtAQP1 is a membrane CO2 pore with physiological functions. Nature425, 734-

737.

Wallace IS, Roberts DM. 2004. Homology modeling of representative

subfamilies of Arabidopsis major intrinsic proteins. Classification based on the

aromatic/arginine selectivity filter. Plant Physiology135, 1059-1068.

Page 108: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

95

Wang X, Li Y, Ji W, Bai X, Cai H, Zhu D, Sun X-L, Chen L-J, Zhu Y-M. 2011.

A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress

and depresses salt and dehydration tolerance in transgenic Arabidopsis

thaliana. Journal of Plant Physiology168, 1241-1248.

Wudick MM, Luu D-T, Maurel C. 2009. A look inside: localization patterns and

functions of intracellular plant aquaporins. New Phytologist184, 289-302.

Page 109: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

96

8 SUPPORTING INFORMATION

S1 Fig.Overexpression of CsTIP2;1 in transgenic tobacco plants. (a) GUS

activity detected in tissues of CsTIP2;1-overexpressing transgenic tobacco

plants. (b) PCR amplification of nptII gene in genomic DNA from leaves of WT

and transgenic tobacco plants. Lanes:M molecular weight marker, C- WT

tobacco, C+ pCAMBIA 2301/CsTIP2;1 vector, L1–L21 independent transgenic

lines. (c) qPCR analysis of CsTIP2;1 expression in transgenic tobacco plants.

The levels of mRNA expression were normalized to the corresponding value of

the b-actin signal. Normalized values of mRNAs accumulation are represented

using the signal value of L13 as a reference (1). The data are means ± SE of

three biological replicates and three technical replicates per plant. L1-L21

independent transgenic lines.

S1 Table.Segregation of the kanamycin resistance in the T1 generation of

CsTIP2;1-overexpressing transgenic tobacco plants.

Page 110: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

97

Transgenic

line

Number of T1 seeds Number loci estimated

from Chi-square value

Chi-square

value

P value

Kanamycin

resistant

Kanamycin

sensitive

L1 119.3 37.7 1 0.43 (3:1) 0.93

L8 123.5 34.5 1 0.86 (3:1) 0.83

L9 114.0 35.0 1 1.38 (3:1) 0.71

L10 119.8 40.8 1 0.32 (3:1) 0.96

L12 125.8 41.5 1 0.08 (3:1) 0.99

Page 111: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

98

CAPÍTULO 3

NOVEL CONNECTIONS BETWEEN GALACTINOL

SYNTHASE (GolS) EXPRESSION AND STRESS

TOLERANCE REVEALED BY THE MOLECULAR AND

FUNCTIONAL CHARACTERIZATION OF CITRUS GolS

GENES

Page 112: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

99

ABSTRACT Genes encoding for Galactinol Synthase (GolS) are found in diverse plant

species and play important roles in the physiology of plant stress resistance,

photosynthate translocation and seed development. In this study we have

identified and characterized the complete set of GolS genes encoded by the

sweet orange genome. By homology searches against the Arabidopsis thaliana

GolS (AtGolS) sequences, eight CsGolS related genes were identified in the

sweet orange genome.Phylogenetic analysis showed that only three CsGolS

genes (CsGolS6, 7 and 8) have close orthologs in Arabidopsis and the others

seem to have evolved later from gene duplication events. The CsGolS genes

are distributed throughout four sweet orange chromosomes and exhibit anexon-

intron structureconserved with the Arabidopis orthologs, as well as conserved

domains at the amino acid level. Several stress-related cis-acting regulatory

elements were found in the promoter region of the CsGolS genes, including

ABRE, DRE/CRT, MYBS and LTRE. Analysis of gene expression in plants

subjected to drought and salt stresses, as well as to infection with 'Candidatus

Liberibacter asiaticus', showed that the CsGolS genes were differentially

regulated by the different stresses, suggesting a role for these genes in stress

tolerance.CsGolS6-overexpressing transgenic tobacco plants showed higher

photosynthetic capacityand growth under drought conditionsin comparison with

the wild-type (WT) plants. These results correlated with the increased levels of

ascorbate and dehydroascorbate produced by the transgenic plants.

Key words: abiotic stress, biotic stresses, Galactinol Synthase,orange,

physiological

1 INTRODUCTION

Environmental stresses are factors that limit the development or cause

injury to an organism. An important protection mechanism against

environmental stresses in plants is the accumulation of osmoprotectants

(Ronteinet al., 2002). Raffinose family of oligosaccharides (RFOs) have been

proposed to play important roles in stress protection in plants under biotic and

Page 113: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

100

abiotic stress (Smirnoff and Cumbes 1989; Morelli et al., 2003; Morsy et

al.,2007; Nishizawa et al.,2008; Van den Ende and Valluru, 2009; Van den

Ende et al., 2011; Peshev et al., 2013). The principal metabolites of the RFOs

pathway are galactinol and myo-inositol. Galactinol is formed from UDP-

galactose and myo-inositol via the activity of galactinol synthase (GolS), which

is considered a key regulatoryenzyme in the pathway (Keller and Pharr 1996;

Peterbauer et al., 2001). GolS genes are found in diverse plant species and

associated with multiple developmental and environmental responses.

Evidences indicate that GolS is important in the physiology of plant stress

resistance, photosynthate translocation and seed development (Zhou et al.,

2012).

In Arabidopsis thaliana, there are seven members belonging to the GolS

gene family, of which AtGolS1, AtGolS2 and AtGolS3 mRNAs were detected in

mature seeds and were also induced by drought, salt and low temperature

stresses (Taji et al., 2002). The overexpression of GolS (AtGolS1, AtGolS2,

AtGolS4) and a raffinose synthase gene in transgenic Arabidopsis increased

the galactinol and raffinose concentrations and resulted in effective ROS

scavenging capacity andoxidative stress tolerance (Nishizawa et al.,2008;

Bolouri-Moghaddam et al., 2010). In leaves of tomato (Solanum lycopersicum)

and Arabidopsis seedlings, the transcript levels of GolS increased under

environmental stress, such as cold and desiccation (Downie et al., 2003; Zuther

et al., 2004). In Coffea arabica, the accumulationof raffinose, stachyose and the

differential transcriptional regulation of three GolS isoforms were observed in

response to abiotic stresses (dos Santos et al., 2011). In citrus,accumulation of

raffinose concomitant with the induction of a raffinose synthase gene was

reported in roots of drought-stressed mandarin, suggesting that raffinose is an

important osmolyte accumulating during drought stress in citrus (Gimeno et al.,

2009).

In biotic stress studies, transgenic tobacco expressing the cucumber

gene CsGolS showed increased galactinol levels in the roots and constitutive

resistance against the pathogens Botrytis cinerea and Erwinia carotovora (Kim

et al., 2008). Galactinol acts as an endogenous molecular signal for induction of

defence responses in plants (Kim et al., 2008). Transcripts encoding enzymes

related to the metabolism of raffinosewere identifiedin citrus plants infected with

Page 114: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

101

Candidatus Liberibacter americanus (Calam) (Mafra et al., 2012). Among them,

agalactinol synthase isoform (named here as CsGolS8) increased by seven-fold

in infected plants. RFOs function as potent antioxidants to minimize the

oxidative stress that occurs near to the necrotic sieve elements formed during

infection.

The identification and understanding of the physiological and molecular

mechanisms of plant adaptation to biotic and abiotic stresses is of both

agronomic and economic importance. In the present study, we report the

identification and characterization of the complete set of the Citrus species GolS

(CsGolS) genes through a genome-wide analysis of the sweet orange reference

genome and characterization oftheir sequences, evolutionary relationships,

putative functions and expression patterns in various tissues and in response to

abiotic stresses and ‘Candidatus Liberibacter asiaticus’ infection. Transgenic

tobacco plants overexpressing the CsGolS6 were also generated and analyzed.

This study provides several evidences that the GolS gene family plays

important roles in the response and tolerance of citrus plants to both biotic and

abiotic stresses.

2 MATERIALS AND METHODS

2.1 Identification and sequences analysis

The HMM (Hidden Markov Model) profile of the PFAM

(http://pfam.sanger.ac.uk/) (Punta et al., 2012) motif 01501 (Glycosyl

transferase family 8) was used as a keyword to search the sweet orange

genome sequence database at Phytozome (http://www.phytozome.org/citrus/)

(Wu et al., 2014). The 10 Arabidopsis thaliana GolS protein sequences were

retrieved from TAIR (http://www.arabidopsis.org/), according to previous reports

(Nishizawa et al. 2008), and also used to align the sweet orange genome

sequence assembly available at Phytozome (v9.1) using the TBLASTN tool.

After merging the results from all these strategies, unique entries (with unique

locus ID) were identified to remove the redundancy. The resulting sequences

were manually inspected for the presence of characteristic and functionally

important GolS amino acids and motifs. Multiple sequence alignments of the

Page 115: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

102

deduced amino acid sequences of the CsGolS and those of A. thaliana were

performed using the default parameters of ClustalW (Thompson et al., 1994).

The dendrogram was generated by the MEGA 6 program (Tamura et al., 2013)

using the Neighbor-Joining (NJ) method (Saitou; Nei,1987) and bootstrap

analysis (1,000 replications).

Information about coding sequence (CDS), full-length sequence and

predicted amino acid sequence was obtained for each sweet orange GolS gene

from the Phytozome database. The GRAVY (grand average of hydropathy) and

molecular weight of the deduced amino acid sequences were predicted by the

PROTPARAM tool available on the Expert Protein Analysis System (ExPASy)

proteomics server (www.expasy.ch/tools/protparam.html). The subcellular

localization of the CsGolS proteins were predicted using the WoLF PSORT toll

available at http://www.genscript.com/psort/wolf_psort.html.

One kb upstream region from the translation start site was obtained from

all the sweet orange GolS genes and subsequently analysed in the PLACE

database (http://www.dna.affrc.go.jp/PLACE/signalscan.html) to identify the

presence of the stress-responsive cis-acting regulatory elements ABRE (ABA-

responsive element; ACGTG), DRE/CRT (dehydrationresponsiveelement/C-

repeat; G/ACCGAC), MYBS (MYB binding site; TAACTG) and LTRE (low-

temperature-responsiveelement; CCGAC) in their promoters.

The physical locations of CsMIPs were determined by confirming the

starting position of all genes on each chromosome, using BLASTN searching

against the local database of the Citrus sinensis Annotation Project (CAP;

http://citrus.hzau.edu.cn/orange/). MapChart software was used to plot the gene

loci on the sweet orange chromosomes (Voorrips, 2002).

2.2 Plant materials and stress treatments

Two-years-old sweet orange [Citrus sinensis (L.) Osbeck] plants grafted

on Rangpur lime (Citrus limonia Osbeck), a rootstock highly resistant to

drought, were used in the drought stress experiment. The drought stress

experiment was carried out as described by Martins et al. (2015).For salt

treatments, sweet orange [C. sinensis (L.) Osbeck] seeds were in vitro

germinated as described by de Oliveira et al. (2011). Twenty-days-old seedlings

Page 116: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

103

of nucellar origin were selected, based on their uniformity, and transferred to

MS medium alone (control), MS medium containing 20% Polyethylene Glycol

6000 (Carbowax 6000, Union Carbide Corporation) or 150 mMNaCl (Merck,

Darmstadt, Germany). Each treatment consisted of fifteen biological replicates.

Leaves and roots were harvested 20 days after the treatments and immediately

frozen in liquid nitrogen and stored at -80oC. Plants were infected with

‘Candidatus Liberibacter asiaticus’ as described in Fan et al. (2012). Briefly,

two-year-old seedlings of rough lemon (C. jambhiri Lush.) and sweet orange (C.

sinensis L. Osbeck) were graft-inoculated with bud wood from ‘Ca. L.asiaticus’

infected ‘Carrizo’ citrange (C. sinensis L. Osbeck × P. trifoliata L. Raf.) trees

kept under greenhouse conditions. Plants were grafted with bud wood from

healthy Carrizo trees. All these plants were kept in a United States Department

of Agriculture Animal and Plant Health Inspection Service and Center for

Disease Control-approved and secured greenhouse at the University of Florida,

Citrus Research and Education Center, Lake Alfred. Three biological replicates

were produced for each citrus species in each treatment. Quantitative real-time

PCR was performed to confirm the presence of ‘Ca. L. asiaticus’ in the inoculum

source and inoculated plants as described in Li et al. (2006). Four fully

expanded leaves were sampled separately from ‘Ca. L.asiaticus’ inoculated

plant and mock-inoculated plants (used as controls) of each citrus species at 0,

7, 17, and 34 weeks after inoculation (WAI). Leaves were immediately frozen in

liquid nitrogen and stored at -80°C until use. Three biological replicates were

produced for each condition. In total, 12 plants with 48 leaf samples were

collected (2 species x 2 treatments x 3 replicates x 4 time points).

The stress tolerance of wild-type (WT) and CsGolS6-overexpressing

transgenic plants of tobacco (Nicotiana tabacum cv. Havana) was examined in

vitro and in greenhouse conditions. The WT and transgenic (T0 generation)

plants were grown in plastic pots of 15L, containing a mixture of soil and

washed sand (ratio 3:1),in agreenhouse for three months. The seeds were

collected and germinated on MS medium [Murashigeand Skoog (MS)] medium

for the WT and MS medium + 50 mg L-1 kanamycin (Sigma, St. Louis, USA) for

the transgenic lines.Ten-day-old WT and transgenic (T1 generation) seedlings

were removed from germination medium and transferred to MS medium only

(control treatment) or MS medium containing 20% PEG 6000 (Carbowax 6000,

Page 117: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

104

Union Carbide Corporation) or 150 mMNaCl (Merck, Darmstadt, Germany).

Each treatment contained three replicates composed of fifteen seedlings for

each WT and transgenic lines. The FW of individual seedlings was measured

20 days after the treatments.

Uniform plants of WT and transgenic lines (T2 generation) containing an

average of 10 to 15 leaves were used in the drought stress experiment. Plants

were acclimatized to greenhouse conditions (25±4°C, 16 h of light and RH

oscillating between 80 and 95%) during 45 days. The plants were grown in

plastic pots of 20L, containing a mixture of soil and washed sand (ratio 3:1).

Thereafter, the pots were closed with aluminum foil to prevent water loss by

evaporation and a set of 300 plants (5 lines x 4 treatments x 15 biological

replicates) were subjected to the following treatments: (i) 15 plants in control of

each line, in which plants were maintained at leaf predawn water potential

values of -0.2 to -0.4 MPa by daily irrigation; (ii) 15 plants in drought of each

line, in which the plants were exposed to a progressive soil water deficit until

their leaves reach predawn water potential values of -1.0 to -1.5 MPa; (iii) 15

plants in drought of each line, in which the plants were exposed to a

progressive soil water deficit until their leaves reach predawn water potential

values of -1.6 to -2.0 MPa and (iv) 15 plants in re-irrigation of each line, in which

plants recovery their leaf predawn water potential values to-0.2 to -0.4 MPa by

irrigation after drought. The leaf predawn water potential was recorded on the

third fully expanded mature leaf from the apex of each plant, between 2 AM and

4 AM, using a Scholander-type pressure pump (m670, Pms Instrument Co.,

Albany, USA).

2.3 RNA extraction and expression analysis of CsGolS in citrus

Total RNA extraction, cDNA synthesis and quantitative real-time RT-PCR

(qPCR) analysis were performed as described previously (de Oliveira et al.,

2011). qPCR primers were designed in order to avoid the conserved regions.

Primersequences are shown in Table S1. Glyceraldehyde-3-phosphate

dehydrogenase C2 (GAPC2) was used as an internal reference gene to

normalize expression among the different samples (Mafra et al., 2012). Data

were obtained from a pool of three biological replicates that were individually

Page 118: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

105

validated. The heatmap of expression of plants infected with ‘Candidatus

Liberibacter asiaticus’was generated using R 3.1.0 software.

Table S1. Primers used in the qPCR analysis.

Name Locus ID Primer Size product (bp)

CsGolS1 orange1.1g006648m F: 5’- CCCTGCAAGGAACTCGTGAC-3’ R: 5’- CAAGAACCAACCGGAAGCTG-3’

98

CsGolS2 orange1.1g043696m F: 5’- TCAAGAGATGTGGCCCGTTT-3’ R: 5’- CCAAAAGCACATGCACTGGA-3’

91

CsGolS3 orange1.1g007705m F: 5’- AGCCTTGGGCGTGTTACAGA-3’ R: 5’- AGCTTCCACCACCTCTCGTG-3’

97

CsGolS4 orange1.1g037463m F: 5’- GGGCGATGGTCTTTATGCAA-3’ R: 5’- GCGACTCACCATGTCCCAAT-3’

91

CsGolS5 orange1.1g041855m F: 5’- AAAACTCGAGCAGGGATCTCG-3’ R: 5’- GTTTTCCATCCGGCAGCTCT-3’

88

CsGolS6 orange1.1g024367m F: 5’- AGCACCAAGTCTGCCAAAGC-3’ R: 5’- AGCCCTTAACCAAGCCAACG-3’

89

CsGolS7 orange1.1g020230m F: 5’- GGCGACGACAAACAGTGAAA-3’ R: 5’- CAGCAGATGGGGCATTTCTT-3’

95

CsGolS8 orange1.1g019647m F: 5’-GCCTTCTGCTGATGGTAATGC-3’ R: 5’-CACAAACTGAACGGCAGCAG-3’

85

2.4 CsGolS6 cloning and generation of transgenic tobacco

The coding sequence of the CsGolS6was amplified from leaves of

drought-stressed‘Rangpur’ lime by RT-PCR, using the primers 5’-

ATGGCCCCTGATATCACCCCC-3’ and 5’-CTAAGCAGCAGACGGGGCGG-

3’,cloned in pGEM-T, and then cloned in sense orientation into the SalI/NotI

sites of pUC118 under the control of the CaMV 35S promoter (35S-P) and

terminator (35S-T) sequences. The resulting 35S-P::CsGolS6::35S-T

expression cassette was then removed from the pUC118 vector by digestion

with PstI and inserted into the same restriction site of the pCAMBIA2301 vector.

The pCAMBIA2301 vector contains the neomycin phosphotransferase II (nptII)

selectable marker gene and the beta-glucuronidase (GUS) uidAscorable marker

gene driven by the 35S-P. This vector was introduced into the EHA105

Agrobacterium tumefaciens strain by direct DNA uptake, and used for

Agrobacterium-mediated genetic transformation of tobacco as described

previously (Cidade et al., 2012).

Several independent transgenic lines (T0 generation) derived from

distinct transformation events were transferred to soil and grown under

standardized greenhouse conditions to generate seeds by self-pollination. T1

seeds were collected individually from each T0 plant and screened on plates

containing MS medium + 50 mg L-1 kanamycin for analysis of antibiotic-

Page 119: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

106

resistant:-susceptible segregation ratio. PCR screening (Cidade et al., 2012)

was used to distinguish between transgenic and nontransgenic plants. qPCR

analysis to assess the CsGolS6 expression levels in the different transgenic

lines was performed as described above.

2.5 Leaf anatomy

Leaf cross-sections of WT and the CsGolS6-overexpressing transgenic

lineswere collected from the third leaf from the apex of plants maintained for 45

days under greenhouse conditions. Samples of the median portion of the leaf

blade were fixed in FAA 70 (Johansen, 1940) and stored in 70% (v/v) etanol.

Samples were then dehydrated in a graded ethanol series and embedded in

methacrylate (HistoResin, Leica), as described by Feder and O'Brien (1968).

The material was sectioned at 10 μm using a rotary microtome and sections

were stained with toluidine blue (Feder and O'Brien, 1968). Anatomical

featureswere measured, including the adaxial epidermis, abaxial epidermis,

palisade parenchyma and spongy parenchyma. Observations and photographic

documentation were done using a photonic microscope Leica DM 300 (Leica

Microsystems, Wetzlar, Germany). Three biological replicates were used, each

containing three slides.

2.6 Primary metabolomics profiling

The extraction of primary metabolites, derivation standard addition and

sample injection for GC-MS analyzes were performed according to Lisec et al.

(2006) with modifications.The extraction of primary metabolites was performed

in 10 mg of lyophilized leaf tissue with the addition of the extracting solution

containing methanol: chloroform: water ( 2.5:1:1 v/v/v) 60 uL per sample and

ribitol internal standard (0.2 mg ml-1 in H2O). The volume of 1.5 ml of the

extraction mix was added to the plant material and homogenized by vortexing

for 10 seconds and incubated at 4°C for 30 min. The incubated was centrifuged

(14,000 rpm, 5 min) and 0.75 mL of ultra pure H2O was added to the

supernatant (1 ml).The mixture was homogenized by vortexing (15 seconds)

and centrifuged at 14,000 rpm for 15 minutes. The polar top phase containing

Page 120: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

107

the primary polar metabolites were collected and dried in SpeedVac without

heating.

In samples were added 40 uL methoxyamine hydrochloride (20 mg ml-1

in pyridine) for 2 h incubation at 37°C, under agitation of 950 rpm.We added 70

uL of a solution containing 1 ml of N-methyl-N-trimethylsilyltrifluoroacetamide

(MSTFA) and 20 uL of FAME and again incubated for 30 minutes at 37°C under

agitation of 950 rpm. The volume of 100 uL was transferred to vials to be

applied to GC-MS.

The GC-MS TruTOF system was composed by autosampler Split /

Splitless, Agilent 7890A gas chromatograph and mass spectrometer LECO

TruTof. The chromatograms and mass spectra were evaluated using the

Chroma TOF software 4.4 (Leco) and TagFinder 4.0 (Luedemann et al., 2008),

supplied with the library containing the retention time and fragmentation pattern

of the primary metabolites of Golm metabolome database. After identification,

the relative values of the metabolites were normalized by ribitol internal

standard, sample weight and the average of the relative value of the control

treatment (irrigated wild-type plant).

2.7 Statistical analysis

Statistical analysis was carried out with the software BIOESTAT

(Universidade Federal do Pará, Brazil), which tested the experiments as a

completely randomized design. Statistical differences were assessed based on

the analysis of variance (ANOVA) and means were separated by Dunnett test,

with a critical value of p≤ 0.05 andp≤ 0.01.

3 RESULTS AND DISCUSSION

3.1 Identification and sequence analysis of the CsGolS

Eight CsGolS related genes were identified from the sweet orange

genome sequence database at Phytozome (http://www.phytozome.org/citrus/)

by a homology search against the arabidopsis (http://www.arabidopsis.org/),

GolS according to previous report (Nishizawa et al., 2008), using the TBLASTN

Page 121: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

108

tool. Phylogenetic analysis revealed that CSGolSare highly homologous with

each other (Figure S1) and also share homology to the 10 AtGolS (Nishizawa et

al.,2008).CsGolS1, CSGolS2, CSGolS3, CSGolS4 and CSGolS5 have no

'close' orthologs with Arabidopsis genes, seeming to have evolved from gene

duplication events.CsGolS6,7 are orthologs of AtGolS2,3, while CsGolS8 is

ortholog of AtGolS1.

The physicochemical properties of CsGolS were examined to further

understand their molecular characteristics. The CsGolS genes encode proteins

ranging from 203 (23.68kDa) to 637 (73.62kDa) amino acids in length (Table

S1).All the CsGolS had a negative grand average hydropathy (GRAVY) score

(Table S1), suggesting that they are hydrophilic proteins. Analysis of the

predicted subcellular localization showed that all CsGolS are located in

cytoplasm (Table S1). Galactinol synthase (EC 2.4.1.123; GolS) is involved in

the first step of RFOs biosynthesis (Keller and Pharr, 1996) and issupposed to

act in the cytosol (Schneider and Keller, 2009).The deduced amino acid

sequence of all CsGolS isoforms contain common features of plant GolSs. They

have a domain of family 8 proteins (Glycosyltransferase 8), which is

characteristic of galactinol synthases (Sprenger and Keller 2000;Cantarel et al.,

2009).The disparate functions of the Glycosyltransferase 8 family as proven and

putative plant cell wall polysaccharide biosynthetic α-

galacturonosyltransferases, the eukaryotic galactinol synthases (GolS) as α-

galactosyltransferases that synthesize the first step in the synthesis of the

oligosaccharides stachyose and raffinose.The putative starch initiation protein

α-glucosyltransferases, and the large bacterial Glycosyltransferase 8 family of

diverse α-glucosyltransferases and α-galactosyltransferases involved in

lipopolysaccharide and lipooligosaccharide synthesis. Glycosyltransferase 8

family members are involved in several unique types of glycoconjugate and

glycan biosynthetic processes (Yin et al., 2010).

The exon-intron structure of all eight CsGolS genes was analyzed

usingthe sweet orange gene models annotated in the Phytozome.

CsGolS2,CsGolS3 and CsGolS6 had a single intron and two exons (Fig. S2).

On the other hand,CsGolS4,CsGolS5 and CsGolS8 had two introns and three

exons. CsGolS1 and CsGolS7 contained three introns and four exons. A similar

Page 122: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

109

number of exons and introns has been observed in the respective Arabidopsis

orthologs (Taji et al., 2002; Nishizawa et al., 2008).

Analysis of the 1 kb upstream promotor region of all the sweet orange

GolS genes revealed the presence ofstress-related cis-acting regulatory

elements, including ABRE, DRE/CRT, MYBS and LTRE. Our analysis showed

that six CsGolS containing the ABRE core motif, three the MYBS motif, three

the LTRE motif and two the DRE/CRT motif (Fig. S3). Four CsGolS genes

contained at least two of the four different cis-regulatory elements analyzed in

their promoterregions, with one gene containing all the four core motifs

(CsGolS7), one gene containing all the three core motifs (CsGolS4), two genes

containing two core motifs (CsGolS5 and CsGolS6), three genes containing

only one of the core motifs (CsGolS2, CsGolS3 and CsGolS8) and CsGolS1

with no one of the core motifs analyzed.

The positions of all eight CsGolS were mapped on the sweet orange

chromosomes by homology searches against the sweet orange genome

assembly available at the CAP database (Fig. S4). The closely related CsGolS

isoforms CsGolS4, CsGolS5 and CsGolS6 were respectively mapped on close

positions in the chromosome 3, suggesting that they evolved from duplication

events (Fig. S4).CsGolS8 was not exactly located on any chromosome probably

because of an incomplete physical map for sweet orange.

3.2 Expression of CsGolS genes upon abiotic and biotic stress conditions

To identify CsGolS genes potentially involved in abiotic and biotic stress

response and tolerance, qPCR analysis was performed in citrus plants

subjected to drought, PEG, high salinity (NaCl) and 'Ca. L. asiaticus' (HLB)

infection.CsGolS3, 5, 6 and 8 were strongly induced by drought in leaves, while

only CsGolS6 was induced by drought stress in roots (Fig. 1). CsGolS6 was

also the only CsGolS gene induced by salt stress in leaves, while CsGolS1, 2

and 5 were induced by this treatment in roots (Fig. 2). PEG treatment induced

the expression of CsGolS1, 2, 3 and 6 in leaves and CsGolS1 and 6 in roots

(Fig. 3).

The time-course transcriptional analysis in response to ‘Ca. L. asiaticus’

infection showed that all theCsGolS were downregulated at the early stage (7

Page 123: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

110

weeks) of disease in the highly susceptible sweet orange, but not in the tolerant

rough lemon, whose expression levels of all CsGolS did not significantly

changed at this stage (Fig. 4).At the later time points (17 and 34 WAI), the

major difference observed between tolerant and susceptible citrus genotypes

was the expression of CsGolS4 and CsGolS5, suggesting a role for these

genes in the tolerance to HLB.

Ortholog GolS in other species have been shown to be induced by

various stress treatments and hormones (Liu et al., 1998; Sprenger and Keller,

2000; Taji et al., 2002; Zhao et al., 2003; Wang et al., 2009; dos Santos et al.,

2011; Unda et al., 2012). For example, the PtGolS genes were recently shown

to be highly responsive to biotic or abiotic stresses in hybrid poplarand showed

differential induction with gene-specific patterns in source and sink leaves

(Philippe et al., 2010). Similarly, three of the seven A. thaliana GolS genes

(AtGolS1, AtGolS2, and AtGolS3) were shown to be stress-responsive genes

(Taji et al., 2002). It has been hypothesised that galactinol and RFOs function

as signals that modulate stress responses (Valluru and Van den Ende 2011;

Peshev et al. 2013). There is evidence that galactinol can act as a signal during

pathogen-induced systemic resistance, supporting its role in defence against

biotic stresses (Kim et al., 2008; Valluru and Van den Ende, 2011; ElSayed et

al., 2014; Peshev et al., 2013).

Fig.1. Expression analysis of CsGolS genes in response to drought. Ratios

(log2) of relative mRNA levels between stressed and control plants for all eight

CsGolS in leaves and roots, as measured byq PCR. GAPC2 was used as an

endogenous control. The bars show means ± SE from three biological

replicates.

Page 124: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

111

Fig. 2. Expression analysis of CsGolS genes in response to NaCl stress.

Ratios (log2) of relative mRNA levels between stressed and control plants for all

eight CsGolS in leaves and roots, as measured byq PCR. GAPC2 was used as

an endogenous control. The bars show means ± SE from three biological

replicates.

Fig. 3. Expression analysis of CsGolS genes in response to PEG. Ratios

(log2) of relative mRNA levels between stressed and control plants for all eight

CsGolS in leaves and roots, as measured byq PCR. GAPC2 was used as an

endogenous control. The bars show means ± SE from three biological

replicates.

Fig. 4. Expression analysis of CsGolS genes in response to ‘Ca. L.

asiaticus’ infection in rough lemon and sweet orange.Ratios (log2) of

Page 125: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

112

relative mRNA levels between infected and control plants at 0, 7, 17, and 34

WAI for all eight CsGolS, as measured by qPCR. GAPC2 was used as an

endogenous control.

3.3 CsGolS6-overexpressing transgenic tobacco shows enhanced

tolerance to dehydration and salt stresses

The CsGolS6 was further selected for functional characterization

because of its potential involvement in stress tolerance based on the results of

gene expression analysis (Figs. 1, 2 and 3). Independent transgenic lines on

kanamycin-containing medium, representing distinct transformation events,

were screened for the presence of the transgene by PCR (Fig. S5A).The PCR-

positive transgenic lines expressed CsGolS6 at relatively high and varying

levels, as revealed by qPCR analysis (Fig. S5B). The transgenic plants

exhibited a normal phenotype and were fertile.

The biomass accumulation was compared between WT and CsGolS6-

overexpressing transgenic plants subjectedto PEG or salt stress treatments. In

controlled conditions the growth between transgenic plants and WT showed

significant difference.WT plants showed yellow color and low growth compared

to transgenic plants in MS medium supplemented with NaCl or PEG6000. The

fresh weights of the transgenic plants were significantly higher than thoseof WT

upon PEG and salt treatments (Figure 5B). In Arabidopsis overexpression

AtGolS2, at 15 days after osmotic stress treatment, transgenic plant showed

stronger stress tolerance to the WTplants (Taji et al., 2002). These results

indicate that the orthologs CsGolS6 and AtGolS2 have similar function.

Page 126: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

113

Fig. 5.Biomass accumulation of WT and CsGolS6-overexpressing

transgenic lines under normal (control) and stress (salt and PEG) growth

conditions. A)Representative picture of the experiment, taken at 20 days after

the treatments. B) Quantitative analysis. WT and transgenic (L3-L12) seedlings

were transplanted in MS medium containing 20% PEG-6000, 150 mM NaCl, or

MS medium only (control). Statistically significant differences by Dunnett test at

p≤0.05 (*) between WT and transgenic lines, at the respective stress treatment,

are indicated.

3.4 Physiology and growth analysis ofCsGolS6-overexpressing transgenic

plants under drought stress

The CsGolS6-overexpressing transgenic (L3, L6, L10 and L12) and WT

plants were grown under greenhouse conditions and then exposed to drought

stress by decreasing water supply gradually during 45 days. Physiological

aspects such as leaf transpiration rate, stomatal conductance, photosynthetic

rate and leaf relative water content were measured during a dehydration and

rehydration cycle. CO2 assimilation rate (A) analysis showed no difference

between transgenic and WT plantsin control condition (Fig. 6). However, the

CsGolS6 transgenic plants were able to maintain significantly higher rate of

Athan the WT under mild and/or moderate drought stresses. In contrast with the

Page 127: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

114

WT, the transgenic plants showed photosynthetic rates similar, or even higher,

to those of the control plants after rehydration (Fig. 6), indicating that the

drought stress did not significantly affect their photosynthetic apparatus. Only

L3 and L12 showed stomatal conductance and leaf transpiration rate higher

than the WT in the control treatment (Fig. 6). However, all the transgenic lines

showed significantly higher gs and E than the WT in at least one drought

condition tested. No significant differences among the plants on these

parameters were observed after rehydration, except for L3 and L6, which

showed significantly higher E than the WT upon such treatment. L6 and L12

exhibited increased water use efficiency (WUE) under moderate drought stress,

while L3 and L10 showed decreased WUE in such treatment (Fig. 6).The

transpiration rate of the AtGolS2 transgenic plants was lower than that of

WTplants. When plants were rehydrated, all the transgenic plants recovered,

but none of the control plants survived (Taji et al., 2002).These results suggest

that CsGolS6 has a different physiological function than that performed by the

AtGolS2 ortholog, since the citrus gene did not decrease the transpiration rate

of the plants under drought stress, and even improved the CO2 assimilation

rateof the plants under such conditions. Thus, CsGolS6 plays a physiological

role in enhancing the photosynthetic rate under of the plants under drought

stress. Analysis of the leaf water content relative (RWC) revealed that the

transgenic plants were able to maintain higher RWC levels than the WT under

moderate drought stress (Fig. 7).

All the transgenic plants were significantly taller than the WT, irrespective

of the water treatment (Fig. 8). Transgenic plants exhibited significantly higher

values than WT under control conditions for many growth parameters. In the dry

leaf mass, the only L10 line was not significantly higher compared with WT in

moderate stress. The basal stem diameter in the L3 line not differ statistically

from the WT. The root length and volume of L3, L6 and L12 were significantly

higher than the WT under drought conditions (Fig. 8). The fresh root weight in

lines L3 and L10 was not significantly different from the WT in moderate stress.

Collectively, these results indicate that the transgenic lines showed a better

development in control and drought stress conditions than the WT.

Page 128: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

115

Fig. 6.Physiological analysis of WT and CsGolS6-overexpressing

transgenic plants under different water regimes. WT and T2transgenic (L3-

L12) plants were exposed to four water regimes: (1) control (leaf water potential

at -0.3 a -0.5 MPa); (2) mild stress 1 (leaf water potential at -1.0 a -1.5 MPa);

(3)moderate stress 2 (leaf water potential at -1.5 a -2.0 MPa);(4) rehydration

(leaf water potential at -0.3 a -0.5 MPa).The data are means ± SE of ten

biological replicates. *,**Significantly different from WT by Dunnett test at p£0.05

or p£0.01, respectively.

Fig. 7. Relative water content of WT and CsGolS6-overexpressing

transgenic lines under control (irrigated) and moderate drought-stress

conditions. WT and T2transgenic (L3-L12) plants. The data are means ± SE of

ten biological replicates. *Significantly different from drought-stressed WT by

Dunnett test at p£0.05.

Page 129: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

116

Fig. 8.Morphological analyses of WT and CsGolS6-overexpressing

transgenic lines under control (irrigated) and moderate drought-stress

conditions. WT and T2transgenic (L3-L12) plantsgrown under greenhouse

conditions were exposed to a progressive soil water deficit until reach leaf water

potentials of ~-2.0 MPa, or maintained at leaf water potentials of -0.3 to -0.5

MPa as the control treatment. The data are means ± SE of ten biological

replicates. *Significantly different from drought-stressed WT by Dunnett test at

p£0.05.

3.5 Mesophyll anatomy change in the CsGolS6-overexpressing transgenic

plants under drought stress

N. tabacum shows amphistomatic leaves with a dorsiventral mesophyll

type. In control conditions, there was a reduction palisade parenchyma in two

transgenic lines (L3 and L12), but an increase in L6 which, along with the

increase of the spongy parenchyma, contributed to the greater thickness of

itsmesophyll (Fig. 9). In drought conditions, all thetransgenic plants showed a

thicker spongy parenchyma than the WT, which contributed to the increased

thickness of the mesophyll in three (L3, L10 and L12) out of the four transgenic

lines (Fig. 9). The greater thickness of the spongy parenchyma is an adaptation

of some plants that exhibit drought resistance (Ennajeh et al., 2010), since it

increases the abundance of intercellular spaces, thus increasing the internal

Page 130: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

117

diffusion of CO2, which contributes to the higher rate of CO2 assimilation under

stress by water deficit.

Fig. 9.Anatomical analysis of WT and transgenic lines overexpressing

CsGolS6. A - Leaf cross-section of WT and the CsGolS6-overexpressing

transgenic lines L3, L6, L10 and L12, observed under photonic microscope

under moderate drought stress, showing the mesophyll region. Magnification

bars represent 100 µm. Adaxialside (adx), abaxial side (adx), palisade

parenchyma (pp), spongy parenchyma (pe), glandular trichomes (tg), stomata

(*), the vascular tissue (arrow), idioblatos (i).B - Quantitative analysis of the

anatomy of leaf cross-section of WT and the transgenic lines L3, L6, L10 and

L12; epidermis cells; palisade parenchyma; spongy parenchyma; mesophyll.

The data are means ± SE of three technical replicates, each containing three

slides composed for each plant line. Statistically significant differences at

P≤0.05 (*) between WT and transgenic plants.

Page 131: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

118

3.6 Metabolomic changes in CsGolS6-overexpressing transgenic plants

In the control condition, the transgenic plants showed an increase in

ascorbate (1.00 to 7.4), dehydroascorbate (1.00 to 2.91) and fructose (1.00 to

1.69). In stress condition, ascorbate and dehydroascorbate levels were also

higher (1.55 to 4.29 and 0.78 to 3.68, respectively) in most transgenic plants,

while no differences were observed in the fructose levels between transgenic

and WT plants. Surprisingly, the transgenic plants exhibited reduced raffinose

levels (0.32 to 1.00) under control conditions compared to the WT. However,in

contrast with the WT, there was a lightly induction (0.53 to 1.19) in the synthesis

of this sugar in most transgenic plants under stress conditions.The connection

between increased levels of ascorbate and increased CO2 assimilation was

observed in transgenic tomato plants for the gene GME2 (Liu et al., 2011). The

role of ascorbate in photosynthesis is supported by the observation that

transgenic rice plants downregulated for L-galactono-1,4-lactone

dehydrogenase (GLDH), the gene encoding the last stepenzyme for ascorbate

synthesis, resulted in a loss of chlorophyll, a lowerribulose 1,5-bisphosphate

carboxylase/oxygenase protein content, and a lowerrate of CO2 assimilation. As

a consequence, a slower rate of plant growth and lower seed set were

observed. Conversely, increasing GLDH expression maintained high levels of

chlorophyll, rubisco protein, and a higher rate of netphotosynthesis, resulting in

higher seed set (Liu et al., 2011). These data indicate thatthe ascorbate level

and/or GLDH enzyme is closely associated with plant photosynthesis and

growth.

Page 132: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

119

Fig.10.Metabolomic analysisof WT and CsGolS6-overexpressing

transgenic lines under control (irrigated) and moderate drought-stress

(non-irrigated) conditions.WT and T2transgenic (L3-L12) plants.

Page 133: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

120

4 Conclusion

CsGolS genes act in response to abiotic and biotic stresses in citrus and

CsGolS6 has a physiological role in the tolerance to abiotic stress, increasing

the photosynthetic rate and growth under drought conditions presumably due to

the increased synthesis of ascorbate and dehydroascorbate.

5 REFERENCE

Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic

stresses: from genes to the field. J Exp Bot 63, 3523–3543.

Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W

(2010) Sugar signaling and antioxidant network connections in plant cells.

FEBS Journal 277, 2022–2037.

Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B

(2009) The carbohydrate-Active EnZymes database (CAZy): an expert resource

forGlycogenomics, Nucleic Acids Research D233eD238.

Cidade LC, de Oliveira TM, Mendes AFS, Macedo AF, Floh EIS, Gesteira AS,

Soares-Filho WS, Costa MGC (2012) Ectopic expression of a fruit phytoene

synthase from Citrus paradisi Macf. promotes abiotic stress tolerance in

transgenic tobacco. Molecular Biology Reports 39, 10201-10209.

de Oliveira TM, Cidade LC, Gesteira AS, Coelho-Filho MA, Soares-Filho WS,

Costa MGC (2011) Analysis of the NAC transcription factor gene family in citrus

reveals a novel member involved in multiple abiotic stress responses. Tree

Genet Genom 7, 1123-1134.

dos Santos TB, Budzinski IG, Marur CJ, Petkowicz CL, Pereira LF, Vieira LG

(2011) Expression of three galactinol synthaseisoforms in Coffea arabica L. and

accumulation of raffinose and stachyose in response to abiotic stresses. Plant

Physiol Biochem 49, 441-448.

Downie B, Gurusinghe S, Dahal P, Thacker RR, Snyder JC, Nonogaki H, Yim

K, Fukanaga K, Alvarado V, Bradford KJ (2003) Expression of a GALACTINOL

SYNTHASE gene in tomato seeds is up-regulated before maturation

Page 134: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

121

desiccation and again after imbibitions whenever radicle protrusion is

prevented. Plant Physiology 131, 1347–1359.

ElSayed AI, Rafudeen MS, Golldack D (2014) Physiological aspects of raffinose

family oligosaccharides in plants: protection against abiotic stress. Plant Biol

16,1–8.

Ennajeh M,Vadel AM, Cochard H, Khemira H (2010) Comparative impacts of

water stress on the leaf anatomy of a drought-resistant and a drought-sensitive

olive cultivar.Journal of Horticultural Science & Biotechnology 85 (4) 289–

294.

Fan J, Chen C, Yu Q, Khalaf A, Achor DS, Brlansky RH, Moore GA, Li Z-G,

Gmitter FG (2012) Comparative transcriptional and anatomical analyses of

tolerant rough lemon and susceptible sweet orange in response to 'Candidatus

Liberibacter asiaticus' infection. Mol Plant Microbe Interact 25:1396-1407.

Feder N, O'Brien TP (1968) Plant microtechnique: some principles and new

methods. American Journal of Botany 55, 123-142.

Gimeno J, Gadea J, Forment J, Pérez-Valle J, Santiago J, Martínez-Godoy MA

et al. (2009) Shared and novel molecular responses of mandarin to

drought.Plant Mol Biol 70:403–20.

Johansen DA (1940) Plant microtechnique. New York: MacGraw Hill Book.

523 p.

Keller F, Pharr DM (1996) Metabolism of carbohydrates in sinks and sources:

galactosyl-sucrose oligosaccharides. In: Zamski E, Schaffer AA, eds.

Photoassimilate Distribution in Plants and Crops. Marcel Dekker, New York,

115–184.

Kim MS, Cho SM, Kang EY, Im YJ, Hwangbo H, Kim YC, Ryu CM, Yang KY,

Chung GC, Cho BH (2008) Galactinol is a signaling component of the induced

systemic resistance caused by Pseudomonas chlororaphis O6 root colonization.

Mol Plant Microbe Interact 12:1643-53.

Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas

chromatography mass spectrometry-based metabolite profiling in plants. Nature

Protocols1:387–396.

Liu JJJ, Krenz DC, Galvez AF, De Lumen BO (1998) Galactinol synthase

(GolS): increased enzyme activity and levels of mRNA due to cold and

desiccation. Plant Science 134, 11–20.

Page 135: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

122

Liu YH, Yu L, Wang RZ (2011) Level of ascorbic acid in transgenic rice for l-

galactono-1, 4-lactone dehydrogenase overexpressing or suppressed is

associated with plant growth and seed set. Acta Physiol Plant 33:1353–1363.

Luedemann A, Strassburg K, Erban A, Kopka J (2008) Tag Finder for the

quantitative analysis of gas chromatographymass spectrometry (GC-MS)-based

metabolite profiling experiments. Bioinformatics 24:732–737.

Mafra V, Kubo KS, Alves-Ferreira M, Ribeiro-Alves M, Stuart RM, Boava LP,

Rodrigues CM, Machado MA (2012) Reference genes for accurate transcript

normalization in citrus genotypes under different experimental conditions. PLoS

One 7:e31263.

Morelli R, Russo-Volpe S, Bruno N, Scalzo RL (2003) Fenton-dependent

damage to carbohydrates: free radical scavenging activity of some simple

sugars. Journal of Agricultural and Food Chemistry 51, 7418–7425.

Morsy MR, Jouve L, Hausman JF, Hoffmann L, Stewart JM (2007) Alteration of

oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza

sativa L.) genotypes contrasting in chilling tolerance. Journal of Plant

Physiology 164, 157–167.

Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a

novel function to protect plants from oxidative damage. Plant Physiol

147:1251-1263.

Peshev D, Vergauwen R, Moglia A, Hideg E, Van den Ende W (2013) Towards

understanding vacuolar antioxidant mechanisms: a role for fructans. Journal of

Experimental Botany 64, 1025–1038.

Peterbauer T, Richter A (2001) Biochemistry and physiology of raffinose family

oligosaccharides and galactosyl cyclitols in seeds. Seed Science Research 11:

185-197.

Philippe RN, Ralph SG, Mansfield SD, Bohlmann J. (2010). Transcriptome

profiles of hybrid poplar (Populus trichocarpa x deltoides) reveal rapid changes

in undamaged, systemic sink leaves after simulated feeding by forest tent

caterpillar (Malacosoma disstria). New Phytol 188, 787–802.

Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, et al. (2012) The Pfam

protein families database. Nucleic Acids Res 40: D290-301.

RonteinD, BassetG, HansonAD (2002) Metabolic Engineering of Osmoprotectant

Accumulation in Plants. Metab Eng1:49-56.

Page 136: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

123

Saitou N, Nei M (1987) The Neighbor-Joining method: a new method for

reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425.

Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of

compatible solutes. Phytochemistry 28: 1057–1060.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular

Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 2013;30: 2725-

2729.

Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-

Shinozaki K, Shinozaki K (2002) Important roles of drought- and coldinducible

genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant

Journal 29, 417–426.

Thompson JD, Higgens DG, Gibson TJ (1994) CLUSTAL W: Improving the

sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic

Acids Res 22: 4673-4680.

Unda F, Canam T, Preston L, Mansfield SD. (2012) Isolation and

characterization of galactinol synthases from hybrid poplar. J Exp Bot 63:

2059–69.

Van den Ende W, Peshev D, De Gara L (2011) Disease prevention by natural

antioxidants and prebiotics acting as ROS scavengers in the astrointestinal

tract. Trends in Food Science & Technology 22, 689–697.

Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and

oxidative stress: scavenging and salvaging. J Exp Bot 60:9–18.

Voorrips R (2002) MapChart: software for the graphical presentation of linkage

maps and QTLs. J Hered 93: 77-78.

Yin Y, Mohnen D, Gelineo-Albersheim I, Xu Y, Hahn MG (2010)

Glycosyltransferases of Family 8 (GT8) in press. In P Ulvskov, ed, Plant Cell

Wall Polysaccharides: Biosynthesis and Bioengineering (Annual Plant Review

series). Blackwell Publishing.

Wang D, Yao W, Song Y, Liu W, Wang Z (2012) Molecular characterization and

expression of three galactinol synthase genes that confer stress tolerance in

Salvia miltiorrhiza.Journal of Plant Physiology 169, 1838– 1848.

Wang Z, Zhu Y, Wang L, Liu X, Liu Y, Phillips J, Deng XA (2009) WRKY

transcription factor participates in dehydration tolerance in Boea hygrometrica

Page 137: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

124

by binding to the W-box elements of the galactinol synthase (BhGolS1)

promoter. Planta 230:1155-1166.

Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, et al. (2014) Sequencing of

diverse mandarin, pummelo and orange genomes reveals complex history of

admixture during citrus domestication. Nat Biotechnol 32: 656-662.

Zhao T-Y, Meeley RB, Downie B (2003) Aberrant processing of a Maize

GALACTINOL SYNTHASE transcript is caused by heat stress. Plant Sci 165:

245–256.

Zhou T, Zhang R, Guo S (2012) Molecular Cloning and Characterization of

GhGolS1, a Novel Gene Encoding Galactinol Synthase from Cotton

(Gossypium hirsutum). Plant Molecular Biology Reporter 30, 699–709.

Zuther E, Buchel K, Hundertmark M, Stitt M, Hincha DK, Heyer AG (2004) The

role of raffinose in the cold acclimation response of Arabidopsis thaliana. FEBS

Letters 576, 169–173.

6 SUPPORTING INFORMATION

Table S1. Characteristics of genes encoding sweet orange GolS proteins.

Name ID phytozome ID CAP Location Polypeptide length (MW)

pI GRAVY Predicted subcellular localization

CsGolS1 orange1.1g006648m Cs1g05500 chr1:5,229,069..5,232,119

637 (73.62kDa)

6.61 -0.353 Cytoplasm

CsGolS2 orange1.1g043696m Cs7g19860 chr7:15,999,350..16,002,178

521 (60.54kDa)

5.95 -0.358 Cytoplasm

CsGolS3 orange1.1g007705m Cs3g23600 chr3:25,840,038..25,843,105

592 (69.36kDa)

9.04 -0.348 Cytoplasm

CsGolS4 orange1.1g037463m Cs3g13670 chr3:18,022,540..18,025,263

344 (40.74kDa)

6.54 -0.497 Cytoplasm

CsGolS5 orange1.1g041855m Cs3g13720 chr3:18,115,719..18,118,535

203 (23.68kDa)

9.54 -0.393 Cytoplasm

CsGolS6 orange1.1g024367m Cs3g15460 chr3:19,579,954..19,581,767

268 (30.85kDa)

5.71

-0.103 Cytoplasm

CsGolS7 orange1.1g020230m Cs9g01710 chr9:468,115..470,386

329 (37.94kDa)

4.78 -0.188 Cytoplasm

CsGolS8 orange1.1g019647m orange1.1t01729

chrUn:27,794,711..27,796,299

337 (38.27kDa)

5.18 -0.193

Cytoplasm

Page 138: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

125

Fig.S1. Phylogenetic relationships of sweet orange GolS with those of

Arabidopsis thaliana. The deduced amino acid sequences were aligned using

ClustalW2 and the phylogenetic tree was generated using Bootstrap N-J tree

(1,000 resamplings) method and MEGA program (v6.0.5). Numbers at internal

nodes denotes the results of bootstrapping analysis (n = 1000). Cs, Citrus

sinensis; At, Arabidopsis thaliana.

Fig.S2.Analysis of exon-intronstructures of the eight sweet orange GolS

genes.NOI denotes the number of introns, E the exon and I the intron.

Page 139: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

126

Fig.S3. Analysis of the stress-responsive cis-elements ABRE (ACGTG),

DRE/CRT (G/ACCGAC), MYBS (TAACTG) and LTRE (CCGAC) in promoters

of sweet orange GolS genes.Thecis-elements were analyzed in the 1 kb

upstream promoter regionof translation start site ofallCsGolS using PLACE

database.

Fig.S4. Chromosomal locations of CsGolS.The chromosomal position of

each CsGolS was mapped according to the Citrus sinensis Annotation Project

(CAP).The scale is in Mb.

Page 140: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

127

Fig. S5.Overexpression of CsGolS6 in transgenic tobacco plants. (A) PCR

amplification of nptII gene in genomic DNA from leaves of WT and transgenic

tobacco plants. Lanes: M molecular weight marker, C- WT tobacco, C+

pCAMBIA 2301/CsGolS6 vector, L3–L12 independent transgenic lines. (B)

qPCR analysis of CsGolS6 expression in transgenic tobacco plants.

Normalizedvalues of mRNAs accumulation are represented using the signal

value of WT as a reference. The data are means ± SE of three biological

replicates and three technical replicates per plant.

Page 141: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

128

APÊNDICE

ESTUDO DA INTERAÇÃO ENTRE FATORES DE

TRANSCRIÇÃO MYBs E GENES MIPs ENVOLVIDOS

NA RESPOSTA DE CITROS A DEFICIÊNCIA HÍDRICA

E A INFECÇÃO POR Candidatus Liberibacter spp.,

BACTÉRIAS CAUSADORAS DO HLB

Page 142: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

129

1 INTRODUÇÃO

O Brasil é o segundo maior produtor de citros e o maior produtor de

laranja em nível mundial, sendo responsável por 22% da produção total de

laranja e por 52% da produção de suco de laranja concentrado e congelado

(AGRIANUAL, 2014). Apesar do grande volume de produção dos citros no

mundo, a citricultura tem sofrido com perdas, causada por pragas, doenças e

estresses abióticos, que podem influenciar de maneira determinante na

produtividade (GMITTER et al., 2007).

Dentre os estresses bióticos, destaca-se o Huanglongbing (HLB),

popularmente conhecido como ‘greening’. O HLB é considerado a doença mais

destrutiva da citricultura, sendo relatada nas principais áreas produtoras do

mundo (SUTTON et al., 2005; BOVE, 2006; GOTTWALD, 2010). Sua presença

nos pomares tem gerado significativas perdas de produtividade e considerável

aumento nos custos de produção (BOVE, 2006; GOTTWALD, 2010).Os

sintomas de HLB incluem folha com clorose variegada, crescimento atrofiado,

pouco crescimento das raízes, frutos verdes e malformados e, finalmente, a

morte. Os sintomas iniciais de HLB são muito semelhantes aos causados por

deficiência de nutrientes, tais como zinco, magnésio, ou ferro.

HLB é causada por uma bactéria do floema do gênero Candidatus

Liberibacter. Três espécies deste agente patogênico estão associadas com a

doença em citros. A forma asiática, Candidatus Liberibacter asiaticus (Calas), é

encontradaem todos os países afetados por HLB excluindo-seos países do

continente Africano. O tipo Africano, Candidatus Liberibacter africanus (Calaf) e

o Americano, Candidatus Liberibacter americanus (Callan), são encontrados

atualmente somente na África e no Brasil, respectivamente (BOVE, 2006).

Calas é transmitida por Diaphorina citri kuwayama, o psilídeo asiático do citros.

No Brasil, o HLB foi descrito pela primeira vez na região de Araraquara, em

Março de 2004 (COLLETTA FILHO et al., 2004). Atualmente, a doença ocorre

nos estados do Paraná e Minas Gerais e está presente em todas as áreas de

citros do Estado de São Paulo. Em 2010, sua incidência chegou a 24% dos

pomares em São Paulo, com tendência de crescimento observada em anos

anteriores (BELASQUE Jr. et al., 2010).

Page 143: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

130

Dentre os estresses abióticos, o que mais influencia negativamente a

produtividade da citricultura no Brasil é a seca. As plantas cítricas necessitam

de água para manter um crescimento contínuo e apresentar boa produção de

frutos, porém a distribuição pluviométrica no Brasil é bastante irregular e

apesar da incidência de déficits temporários nas regiões citrícolas, o cultivo de

citros é realizado praticamente sem irrigação (SANTOS et al., 1999). Diante

dessa situação, a utilização de porta enxertos com tolerância à deficiência

hídrica se faz necessária.

A adaptação de plantas à seca é um fenômeno complexo que envolve

diversas vias de sinalização e alteração do perfil de expressão gênica

(IKEGAMIet al., 2009).

Em plantas superiores, a expressão dos genes geralmente é regulada

por interações entre proteínasregulatórias e promotores. Um número

significativo de fatores de transcrição tem sido identificado em angiospermas,

capazes de influenciarno controle de expressão de vários genes-alvo em vias

de transdução de sinais (VANDEPOELE et al., 2009). MYB compreende uma

família de fatores de transcrição que está presente em todos os eucariontes.

Em animais e fungos observa-se um número restrito de genes que codificam

para esses fatores, enquanto que em plantas há uma grande variabilidade de

fatores MYB. Em Arabidopsis foram identificados 85 genes MYB, 42 em cana-

de-açúcar, 71 em eucalipto (ROMERO et al., 1998; SOARES-CAVALCANTI et

al., 2009) e177 em laranja doce (HOU et al., 2014). Um estudo prévio sobre a

análise do transcriptomade folhas de limão rugoso (Citrus jambhiri; tolerante ao

HLB) e laranja doce (C. sinensis; suscetível ao HLB) em resposta à infecção

por Candidatus Liberibacter asiaticus, empregando-se a tecnologia de

microarranjos, evidenciou a expressão diferencial de MYBs, sendo umgene

induzido(CsMYB250) e três genes(CsMYB130, CsMYB135 eCsMYB69)

reprimidos em limão rugoso e 12 genes induzidos (CsMYB135, CsMYB163,

CsMYB250, CsMYB130, CsMYB260, CsMYB74, CsMYB67, CsMYB66,

CsMYB330, CsMYB81, CsMYB38 e CsMYB156) e quatro genes reprimidos

(CsMYB79, CsMYB480, CsMYB950 e CsMYB70) em laranja doce, na 27ª

semana após a inoculação (FAN et al., 2012).

As MIPs (‘Major Intrinsic Proteins’) ou aquaporinas constituem uma

superfamília de proteínas de membrana que atuam como componentes

Page 144: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

131

centrais das relações hídricas em plantas (JOHANSON et al., 2001; JAVOT;

MAUREL, 2002). As MIPs vegetais são importantes não somente para relações

planta-água, mas também para diversos aspectos fisiológicos, como resposta a

estresses abióticos, bióticos e de sinalização, já que são capazes de

transportar pequenas moléculas não-carregadas de significância biológica,

incluindo glicerol, ureia, amônia (NH3), CO2, ácido bórico, ácido silícico e

peróxido de hidrogênio (H2O2), etambém de regular o carregamento e

descarregamento do floema, fechamento estomático, movimento foliar e a

homeostase citoplasmática (MAUREL et al., 2008).

Recentementea expressão diferencial de MIPs foi demonstrada entre os

genótipos tolerante (limão rugoso) e suscetível (laranja doce) ao HLB, em

resposta à infecção por Candidatus Liberibacter asiaticus (MARTINS et al.,

2015). Foi observado uma regulação negativa da maioria das CsMIPs em

laranja doce na sétima semana após a inoculação (SAI), porém o mesmo não

foi observado em limão rugoso, podendoesse resultado estar correlacionado

com o aparecimento dos sintomas dadoença no genótipo suscetível, tais como

manchas foliar e amarelecimento (FAN et al., 2012). Os padrões de expressão

de CsPIP2;2, CsTIP1;2, CsTIP2;1, CsTIP2;2 e CsNIP5;1 foram contrastantes

entre as espécies de citros tolerantes e suscetíveis ao longo da 17ªSAI e/ou

34ªSAI, sugerindo envolvimento destes genes no desenvolvimento dos

sintomas mais tardios da doença, tais como a inibição do crescimento e

comprometimento da distribuição do floema (FAN et al., 2012). Em conjunto,

esses resultados sugeremque os genes MIPs podem desempenhar um papel

ativo na patogênese de HLB e que a expressão gênica dessa família pode ser

regulada por MYBs.

Page 145: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

132

2 OBJETIVO GERAL

Investigar a indução da expressão de genes MIPs por fatores de transcrição

MYBs.

2.1 Objetivos específicos

· Validar, via qPCR, os dados de co-expressão de MYBs e MIPs em

amostras de folhas de limão rugoso e laranja doce infectadas por

Candidatus Liberibacter asiaticus.

· Realizar ensaios de coinfiltração (dual GFP transient assay) em folhas de

Nicotiana benthamiana para comprovar a transativação da transcrição de

MIPs por MYBs;

3 MATERIAL E MÉTODOS

3.1 Material vegetal e estirpe de Agrobacterium

Nicotiana benthamiana e Agrobacterium tumefaciens EHA101 foram

utilizadas para a realização dos ensaios de coinfiltração.

3.2 Análise de expressão gênica

As amostras de cDNA que foram utilizadas nas analises de qPCR foram

cedidas pela Universidade de Florida. As plantas foram infectadas com

Candidatus Liberibacter asiaticus, tal como descrito em Fan et al. (2012) e

Martins et al. (2015).

Os procedimentos de qPCR, incluindo testes, validações e

experimentos, foram conduzidos no aparelho ABI 7500 (AppliedBiosystems,

EUA), seguindo as instruções do fabricante. Gliceraldeído-3-fosfato

desidrogenaseC2 (GAPC2) foi usado como um gene de referência interno para

normalizar expressão entre as diferentes amostras (MAFRA et al., 2012).

Os dados foram obtidos a partir de um pool de três réplicas biológicas

que foram validados individualmente e duas réplicas experimentais, em volume

Page 146: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

133

de reação de 22 μl, 10 μl contendo 75-100 ng de cDNA, 1 μl de

oligonucleotídeo(F+R) na concentração de 10 nM, 11 μl de Maxima® SYBR

Green/ROX qPCR Master Mix (2X) (Fermentas, EUA). As condições de

amplificação foram realizadas utilizando-se as seguintes etapas: (1) ativação

da Taq DNA polimerase a 50ºC por 2 min, (2) desnaturação inicial a 95ºC por

10 min, (3) desnaturação a 94ºC por 15s, (4) anelamento a 60ºC por 30s e (5)

extensão a 60ºC por 1 min. As etapas 3 a 5 foram repetidas por 40 ciclos.

Para quantificação da expressão gênica foi utilizado o método

comparativo de Ct:2-ΔΔCt. Reações controle desprovidas de cDNA (NTC)

também foram utilizadas em todos os experimentos. O programa Dissociation

Curve 1.0 (AppliedBiosystems, EUA) foi usado para verificar que somente um

único produto de PCR foi gerado pela amplificação dos transcritos. O heatmap

foi gerado para comparação dos resultados,utilizando o softwareR3.1.0.

3.3 Clonagem Gateway

A partir da análise de qPCR foram selecionados alguns genes para

validar a interação deMYBs com asregiões promotoras de MIPs. As

construções MIPpromotor::GFP e 35S::MYB que foram utilizadas para

coinfiltração em folhas de Nicotianabenthamianaforam obtidas utilizando o

sistema de clonagem Gateway (Invitrogen).

Os oligonucleotídeos desenhados para amplificação dos genes contêm

a sequência correspondente do DNA, a sequência relativa aos sítios de

recombinação (attb1 e attb2), a sequência responsável pela ligação ao

ribossomo (Shine-Dalgarno) e o fragmento Kozac. As sequências das regiões

promotoras das diferentes MIPs e região codante dos genes MYBs foram

obtidas por PCR e purificadas a partir de géis de agarose. Estas sequências

foram clonadas no vetor de entrada pENTR/D-TOPO (Gateway, Invitrogen),

utilizando o pENTR Direcional TOPO Cloning Kit (Gateway, Invitrogen),

seguindo as instruções do fabricante.

Escherichia coli da linhagem DH5a (Clontech, Heidelberg, Germany)

competentes foram transformadas com o vetor recombinante por choque

térmico. Os clones positivos foram selecionados por meiode PCR de colônias.

Todos os vetores obtidos foram sequenciados utilizando o oligonucleotídeo de

Page 147: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

134

iniciação universal M13 “Forward” em conjunto com o oligonucleotídeo reverso

utilizado para amplificação de cada uma das sequências por PCR, de modo a

confirmar a presença do fragmento de inserção no local e na orientação

corretos.

O vetor TOPO recombinante foi linearizado e dosado para ser utilizado

nas reações de recombinação BP. Colônias transformadas foram plaqueadas

em meio LB-canamicina líquido, o DNA e cDNA foi quantificado para ser

utilizado nas reações de recombinação LR. Para a reação de recombinação

foram usados 300ng do vetor pDest15™ e de 100 a 300ng do vetor

pEntry/pKGWFS7 e pEntry/pH2GW7.

3.4 Ensaios de coinfiltração de folhas de Nicotiana benthamiana e análise

de fluorescência

Folhas de N. benthamiana foram coinfiltradas com suspensão de

Agrobacterium tumefaciens (OD600= 0,5) contendo as construções

MIPpromotor::GFP e 35S::MYB. Foram realizadas coinflitrações com diferentes

combinações de genes selecionados das famílias MYB e MIP. Para a infiltração

foi utilizado uma seringa (sem agulha), onde foi efetuado uma pressão na face

inferior da folha, uma contra-pressão com o dedo no outro lado. A infiltração de

sucesso foi observada como uma área de "molhagem" espalhada na folha (Li,

2011).

As folhas de tabaco coinfiltradas foram analisadas relativamente

quanto à atividade do gene gfp, que codifica a ‘Green Fluorescent Protein’

(GFP), sob luz UV. O sinal de fluorescência foi observado com o microscópio

confocal de varrimento a laser.

4 RESULTADOS

Para análise de expressão gênica, 25 genes MYBs foram selecionados

com base no trabalho de Fan et al. (2012). A análise da transcrição temporal

em resposta a infecção por ‘Ca. L. asiaticus' mostrou que todos os CsMYBs

apresentaram padrão de expressão diferencial. Os resultados demonstraram

Page 148: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

135

que 36% dos genesnão foram expressos em Valencia ou Limão Rugoso e 20%

dos genes não foram expressos em ambas as variedades (Fig. 1).

De acordo com a análise de expressão, os genes CsMYB81,

CsMYB83, CsMYB126 e CsMYB480 foram selecionados para realização dos

ensaios de coinfiltração em folhas de Nicotiana benthamiana juntamente com

os genesCsPIP1;4 e CsTIP2;1. Os dados de expressão gênica de CsMYBs e

CsMIPs foram submetidos a análise de correlação de Pearson, cuja

significância dos coeficientes (r) foi determinada pelo teste t de student. Os

resultados permitiram evidenciar correlações significativas tanto positivas como

negativas entre CsMYBs e CsMIPs ao longo do período de desenvolvimento da

doença (Tabela 1).

Folhas de Nicotiana benthamiana foram coinfiltradas com diferentes

combinações de genes selecionados das famílias CsMYBs e CsMIPs, sendo

realizadas um total de oito coinfiltrações. Foram realizadas coinfiltrações em

duplicatas em dias diferentes, onde a indução da expressãodo gene gfp sob luz

UV foi aparente em quatro combinações de coinfiltrações: CsTIP2;1:CsMYB81,

CsPIP1;4:CsMYB83, CsTIP2;1:CsMYB83 eCsPIP1;4:CsMYB83 (Fig. 2).

Page 149: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

136

Fig. 1.Análise da expressão de MYBs de citros em resposta a infecção por

'Ca. L. asiaticus"em limão rugoso e laranja doce. Níveis de mRNA relativos

(log2) entre plantas infectadas e controle a 0, 7, 17, 34 e semanas após a

infecção para todos os CsMYB, via qPCR. GAPC2 foi usado como controle

endógeno.

Page 150: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

137

Tabela 1.Coeficientes de correlação de Pearson entre os dados de co-

expressão de CsMYBs e CsMIPs. A: Amostras de folhas de laranja doce

infectadas por Candidatus Liberibacter asiaticus. B: Amostras de folhas de

limão rugoso infectadas por Candidatus Liberibacter asiaticus. Correlações

significativas apresentam* ou ** para p<0.05 ou p<0.01, respectivamente.

Page 151: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

138

Fig. 2. Ensaio de coinfiltração em folhas de Nicotiana benthamiana. A:

coinfiltração CsTIP2;1:CsMYB81; B: coinfiltração CsPIP1;4:CsMYB83; C:

coinfiltração CsTIP2;1:CsMYB83; D: coinfiltração CsPIP1;4:CsMYB83. Seta:

fluorescência indicando a indução de expressão de GFP na área de

coinfiltração.

5 CONCLUSÃO

· Foi possível confirmar a co-expressão via qPCR de alguns genes MYBs e

MIPs em amostras de folhas de limão rugoso e laranja doce infectadas por

Candidatus Liberibacter asiaticus.

· Quatro combinações de coinfiltrações (CsTIP2;1:CsMYB81,

CsPIP1;4:CsMYB83, CsTIP2;1:CsMYB83 e CsPIP1;4:CsMYB83) induziram

a expressão do gene gfp sob luz UV em folhas de Nicotiana benthamiana,

sugerindo que a expressão dos genes MIPs analisados é induzida pelas

respectivas MYBs.

6 REFERÊNCIAS

Page 152: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

139

ARITUA V., ACHOR D., GMITTER JR. F. G., ALBRIGO G., WANG N. (2013)

Transcriptional and Microscopic Analyses of Citrus Stem and Root Responses

to Candidatus Liberibacter asiaticus Infection. PLoS ONE 8(9): e73742.

doi:10.1371/journal.pone.0073742.

BELASQUE JR. J., BARBOSA J.C., MASSARI, C. A., AYRES, A. J. (2010).

Incidence and distribution of Huanglongbing in São Paulo, Brazil. Citrus

Research & Technology. 31: 1-9.

BOVE J. M. (2006) Huanglongbing: A destructive, newly-emerging, century-old

disease of citrus. Journal of Plant Pathology 88: 7–37.

COLETTA-FILHO H. D., TARGON M. L. P. N., TAKITA M. A., DE NEGRI J. D.,

POMPEU JR. J., CARVALHO S. A., MACHADO M. A. (2004) First report of the

causal agent of huanglongbing (“Candidatus Liberibacter asiaticus”) in Brazil.

Plant Disease 88: 1382.

FAN J., CHEN C., YU Q., KHALAF A., ACHOR D. S., BRLANSKY R. H.,

MOORE G. A., LI, Z-G., GMITTER F. G. (2012) Comparative transcriptional and

anatomical analyses of tolerant rough lemon and susceptible sweet orange in

response to 'Candidatus Liberibacter asiaticus' infection. Mol Plant Microbe

Interact 25: 1396-1407.

FNP CONSULTORIA e COMERCIO. Agrianual 2008: Anuário da Agricultura

Brasileira. São Paulo: Editora FNP, 520 p., 2014.

GMITTER J. R., DENG Z., CHEN C. (2007) Cloning and Characterization of

Disease Resistance Genes In: KHAN I. A. Citrus Genetics, Breeding and

Biotechnology. Washington: CAB International, cap. 13, p.287-305.

GOTTWALD T. R., HUGES G., GRAHAM J. H., SUN X., HILEY T. (2001) The

citrus canker epidemic in Florida: the scientific basis of regulatory eradication

policy for an invasive species. Phytopathology, Saint Paul, v.91, 30-34.

HOU, X. J.; LI, S. B.; LIU, S. R.; HU, C. G.; ZHANG, J. Z. (2014) Genome-

Wide Classification and Evolutionary and Expression Analyses of Citrus MYB

Transcription Factor Families in Sweet Orange. PlosOne

10.1371/journal.pone.0112375.

IKEGAMI, K.; OKAMOTO, M.; SEO, M.; KOSHIBA, T.(2009) Activation of

abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to

water deficit. Journal Plant Research. Vol. 122, pp. 235-243.

Page 153: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

140

JAVOT H., MAUREL C. (2002) The role of aquaporins in root water uptake.

Ann. Bot. 90, p.301–313.

JOHANSON U., KARLSSON M., JAHANSSON I., GUSTAVSSON S., SJOVALL

S., FRAYSSE L., WEIG A. R., KJELLBOM P. (2001) The complete set of genes

encoding major intrinsic proteins in Arabidopsis provides a framework for a new

nomenclature for major intrinsic proteins in plants. Plant Physiol, v.126, p.1358-

1369.

KALDENHOFF R., FISCHER M. (2006) Functional aquaporin diversity in plants.

Biochim. Biophys. Acta (BBA)—Biomembr. 1758 (8), p.1134–1141.

KIM, S. Y., CHUNG, H.-J., AND THOMAS, T. L. (1997) Plant J. 11, 1237–1251.

LI, C.; NG, C. K-Y.; FAN, L-M. (2014) MYB transcription factors, active players

in abiotic stress signaling. Environ and Exp Bot doi:10.1016/j.envexpbot. In

Press.

LI, X. (2011) Infiltration of Nicotiana benthamiana Protocol for Transient

Expression via Agrobacterium. bio-protocol. Vol 1, Iss 14.

MAFRA, V.; KUBO, K. S.; ALVES-FERREIRA, M.; RIBEIRO-ALVES, M.;

STUART, R. M.; BOAVA, L. P.; RODRIGUES, C. M.; MACHADO, M. A. (2012)

Reference genes for accurate transcript normalization in citrus genotypes under

different experimental conditions. PLoS One 7: e31263.

MARTINS, C. P. S.; PEDROSA, A. M.; DU, D.; GONÇALVES, L. P.; YU, Q.;

GMITTER, F. G.; COSTA, M. G. C. (2015) Genome-Wide Characterization and

expression Analysis of Major Intrinsic Proteins during Abiotic and Biotic

Stresses in Sweet Orange (Citrus sinensis L. Osb.). PLoSONE10(9):e0138786.

doi:10.1371/journal.pone.0138786.

MAUREL C. (1997) Aquaporins and water permeability of plant membranes,

Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, p.399–420.

MAUREL, C. (2007) Plant aquaporins: novel functions and regulation

properties, FEBS Lett. 581 (12), p.2227–2236.

MAUREL, C.; CHRISPEELS, M. J. (2001) Aquaporins, a molecular entry into

plant water relations. Plant Physiol, 125, p.135–138.

MAUREL, C.; VERDOUCQ, L.; LUU, D. T.; SANTONI, V. (2008) Plant

aquaporins: membrane channels with multiple integrated functions. Annual

Review of Plant Biology. 59: 595-624.

Page 154: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

141

NELSON, D. I.; COX, M. M (2005) Lehninger principles of biochemistry, 4 ed.

New York: W. H. Freeman, 1119p.

PASTORI, G.M.; FOYER, C.H. (2002) Common components, networks, and

pathways of cross-tolerance to stress. The central role of “redox” and abscisic

acid-mediated controls. Plant Physiology, v.129, p.460-468.

ROMERO, I.; FUERTES, A.; BENITO, M.J.; MALPICA, J.M.; LEYVA, A.; PAZ-

ARES, J.(1998). More than 80 R2R3-MYB regulatory genes in the genome of

Arabidopsis thaliana. Plant Journal, v. 14, p. 273-284.

SANTOS, C. H.; GRASSI FILHO, H.; RODRIGUES, J. D.; PINHO, S. Z. (1999)

Níveis de alumínio e acúmulo de macronutrientes em porta-enxertos cítricos

em cultivo hidropônico. Sciencia Agrícola, Piracicaba, n. 4, v. 56, p. 1165-1175.

SOARES-CAVALCANTI, N.M.; WANDERLEY NOGUEIRA, A.C.; BELARMINO,

L.C.; BARROS, P. S.; BENKO-ISEPPON, A.M. (2009). Comparative in silico

evaluation of MYB transcription factors in eucalyptus, sugarcane and rice

transcriptomes. Lecture Notes in Computer Sciences, v. 5488, p. 44-55.

TAIZ, L.; ZEIGER (2004) E. Fisiologia vegetal. 3ed. Porto Alegre: Artmed.

VANDEPOELE, K.; QUIMBAYA, M.; CASNEUF, T.; DE VEYLDER, L.; VAN DE

PEER, Y. (2009). Unraveling transcriptional control in arabidopsis using cis-

regulatory elements and coexpression networks. Plant Physiology, v. 150, p.

535-546.

SUTTON, B.; DUAN, Y.; HALBERT, S.; SUN, X.; SCHUBERT. T.; DIXON, W.

(2005) Detection and identification of citrus haunglongbing (greening) in Florida,

USA. In Proceeding of the second international Citrus Cankes an

haunglongbing.

Page 155: UNIVERSIDADE ESTADUAL DE SANTA CRUZ PROGRAMA DE …nbcgib.uesc.br/genetica/admin/images/files/cristina_martins_.pdf · pela concessão da bolsa de estudo. ... CsGolS6 foi superexpresso

142

CONCLUSÃO GERAL

Um total de 34 membros da família gênica MIP (CsMIPs) foi identificado

em C. sinensis e dividido em cinco subfamílias (CsPIPs, CsTIPs, CsNIPs,

CsSIPs e CsXIPs). A expressão gênica de CsMIPs foi observada em diferentes

tecidos sob estresses por seca e sal, bem como com infecção por 'Ca.

Liberibacter asiaticus'. Um papel especial na regulação da expressão gênica é

proposto para a maioria CsMIPs durante déficit hídrico, estresse salino e o

desenvolvimento da doença HLB. Plantas transgênicas de tabaco

superexpressando CsTIP2;1 apresentaram tolerância a estresses hídrico e

salino devido (i) ao maior conteúdo de água nas células, resultando na maior

dissolução do sal e auxiliando na expansão celular, (ii) a atenuação dos danos

oxidativos pela detoxificaçãodo H2O2 e (iii) indução da abertura estomática.

Essas modificações contribuiram para maior capacidade fotossintética, taxa de

transpiração e eficiência do uso da água sob condições de deficiência hídrica,

em comparação com as plantas não-transformadas. Oito genes codificando

GolS foram identificados no genoma de laranja doce e caracterizados no

presente estudo. A expressão gênica de CsGolS foi analisada em diferentes

tecidos de citros sob estresses por deficiência hídrica e sal, bem como com

infecção por 'Candidatus Liberibacter asiaticus'. Plantas transgênicas de tabaco

superexpressando CsGolS6 apresentaram maior capacidade fotossintética,

maior taxa de transpiração e condutância estomática comparado com a

linhagem tipo-selvagem. O gene CsGolS6 desempenha papel importante na

resposta e tolerância de plantas para o estresse a seca. Coletivamente, os

resultados obtidos no presente estudo permitiram ampliar a base de

conhecimento potencialmente aplicável ao melhoramento, bem como facilitar o

desenvolvimento de novas variedades porta enxerto potencialmente úteis para

a citricultura brasileira.