QUE FAZ CRESCER O PULMÃO?

Preview:

DESCRIPTION

Apresentação em Power Point de palestra em português de Dr. Paulo Gurgel Carlos da Silva, médico pneumologista em Fortaleza, Brasil, e editor do Blog do PG.

Citation preview

QUE FAZ CRESCER O PULMÃO?

Dr. Paulo Gurgel

Fortaleza - Brasil

Espirometria do mêsCaso 2

• NPL, sexo feminino, 15 anos• Tosse + expectoração purulenta, crônicas• Não fumante• Diagnóstico: bronquiectasia multissegmentar• 2003: lingulectomia (LSE) + piramidectomia (LIE)• 2004: lobectomia (LMD) + segmentectomia anterior

(LSD) + segmentectomias medial e anterior (LID)• Indicação da espirometria: avaliação pós-operatória

Radiografia de tórax em 2005 (após ressecção de 10 segmentos pulmonares)

8 – 5 = 310 – 5 = 5

18 – 10 = 8

Parâmetro Previsto LIN Pré-BD

(% Previsto)

Pós-BD

(% Previsto)

Pré-BD –

Pós-BD

CVF (L) 3,75 3,26 2,53 (67%) 2,51 (67%) -0,02

VEF1 (L) 3,38 2,94 2,20 (65%) 2,34 (69%) 0,14 (4%)

VEF1/CVF 0,90 (90%) 0,87 (96%) 0,93 (103%)

FEF25-75/CVF 1,06 (60%) 0,95 (89%) 1,17 (110%)

Laudo – Distúrbio ventilatório restritivo em grau leve. Sem variaçãosignificativa após BD, demonstrável no momento do exame.

ESPIROMETRIA FORÇADA16/02/05

Parâmetro Inicial

(2003)

Atual

(2005)

CVF (L) 2,62 2,53

VEF1 (L) 2,37 2,20

VEF1/CVF 0,90 0,87

FEF25-75/CVF 1,38 0,95

PFE (L) 5,13 4,98

ESPIROMETRIAS FORÇADAS22/05/03 e 16/02/05

Why Doesn't Exercise Grow the Lungs When Other Factors Do?

Peter D. Wagner[Exerc Sport Sci Rev 33(1):3-8, 2004. © 2004 American College of Sports Medicine]

Abstract

Exercise training enhances every component of the O2 transport and metabolic system— except the lungs. Consequently, the lungs can contribute to the limitation of VO2max. Only hypoxia early in life and substantial lung resection reproducibly stimulate growth in normal lungs across species. Possible pathways involve genes activated by hypoxia or mechanical strain, or both, including growth factors, hormones, nitric oxide, and retinoids.

Conceptual diagram to show O2 pumped from the lungs by the heart through the circulation to the muscles. This is an in-series system (arrows) in which each component has a characteristic conductance for O2 indicated by the diameter of the "tube" in each case. The figure shows that muscle training improves the conductance of all components except the lungs (changes not to scale). This makes the lungs a potentially significant contributor to exercise limitation.

Postpneumonectomy Lung Growth

1. Growth does not measurably occur until approximately 50% or more of the lung has been removed.

2. Growth is reflected by structural as well as functional enhancement in the remaining lungs (slide 9)

3. Growth occurs at the alveolar level, and not at the conducting airway or blood vessel level.

4. If compensatory hyperinflation in the remaining lung is prevented by replacing the removed lobes by an inert gas-filled balloon, growth does not occur to nearly the same degree (slide 10)

Effects of pneumonectomy on exercise performance and arterial oxygenation in dogs. Two months after surgery ), limitation is severe ; 10 months later, oxygenation and exercise capacity are improved , to within 85% of normal , reflecting regenerative lung growth. (Reprinted from Hsia, C.C.W., L.F. Herazo, M. Ramanathan, R.L. Johnson, Jr., and P.D. Wagner.Cardiopulmonary adaptations to pneumonectomy in dogs II. VA/Q relationships and microvascular recruitment. J. Appl. Physiol. 74:1299 –1309, 1993. Copyright © 1993 American Physiological Society. Used with permission.)

Prevention of lung expansion (and subsequent regenerative lung growth after pneumonectomy) in foxhounds causes impaired arterial oxygenation and exercise capacity . Pneumonectomized animals in which lung growth was permitted show partial recovery (both data approximately 7 months after surgery). (Reprinted from Hsia, C.C.W., R.L. Johnson, E.Y. Wu, A.S. Estrera, H. Wagner, and P.D. Wagner. Reducing lung strain after pneumonectomy impairs oxygen diffusing capacity but not ventilation-perfusion matching. J. Appl. Physiol. 95:1370 –1378, 2003. Copyright © 2003 American Physiological Society. Used with permission

O PENSADOR (Auguste Rodin)

Respiração basalsexo masculino, 30 anos, 175 cm

CV = 5 L

VEF1 = 4,2 L

Volume minuto = volume corrente x freqüência

= 0,5 L x 15 = 7,5 L/min

Respiração em esforço máximosegundo a espirometria

VVM = VEF1 x 37,5 + 15,8

= 4,2 L x 37,5 + 15,8

= 173,3 L/min (23 x)

LIN = VVM - 26

= 147,3 L/min (19 x)

Respiração em esforço máximo segundo o TECP

50 – 60% CV x 50 – 60 ciclos

3,0 x 60 = 180 L/min

2,5 x 50 = 125 L/min

= 180 – 125 L/min

(24 – 17 x)

Comparando...

Débito cardíaco

= volume de ejeção sistólica x frequência

= 5 – 6 L/min em repouso

= 20 – 25 L/min em esforço máximo (4x)

GRATO PELA ATENÇÃO

pgcs@ig.com.brhttp://blogdopg.blogspot.com