Click here to load reader
View
226
Download
1
Embed Size (px)
7/25/2019 Clculo i - Ead - Ftc
1/74
7/25/2019 Clculo i - Ead - Ftc
2/74
CLCULOI
7/25/2019 Clculo i - Ead - Ftc
3/74
SOMESBSociedade Mantenedora de Educao Superior da Bahia S/C Ltda.
Presidente Gervsio Meneses de Oliveira
Vice-Presidente William OliveiraSuperintendente Administrativo e Financeiro Samuel Soares
Superintendente de Ensino, Pesquisa e Extenso Germano Tabacof
Superintendente de Desenvolvimento e
Planejamento Acadmico Pedro Daltro Gusmo da Silva
FTC EaDFaculdade de Tecnologia e Cincias Ensino a Distncia
Diretor Geral Waldeck Ornelas
Diretor Acadmico Roberto Frederico Merhy
Diretor de Tecnologia Reinaldo de Oliveira BorbaDiretor Administrativo e Financeiro Andr Portnoi
Gerente Acadmico Ronaldo Costa
Gerente de Ensino Jane Freire
Gerente de Suporte Tecnolgico Jean Carlo Nerone
Coord. de Softwares e Sistemas Rmulo Augusto Merhy
Coord. de Telecomunicaes e Hardware Osmane Chaves
Coord. de Produo de Material Didtico Joo Jacomel
EQUIPE DE ELABORAO / P RODUO DE MATERIAL DIDTICO
Produo Acadmica
Gerente de Ensino Jane Freire
Autor Antonio Andrade do Espirito Santo
Superviso Ana Paula Amorim
Coordenao de Curso Geciara Carvalho
Reviso Final Adriano Pedreira Cattai
Paulo Henrique Ribeiro do Nascimento.
Produo Tcnica
Edio em LATEX 2 Adriano Pedreira Cattai
Paulo Henrique Ribeiro do Nascimento.
Reviso de Texto Carlos Magno
Coordenao Joo Jacomel
Equipe Tcnica Ana Carolina Alves, Cefas Gomes, Delmara Brito,
Fbio Gonalves, Francisco Frana Jnior, Israel Dantas,
Lucas do Vale, Mariucha Pontes, Alexandre Ribeiro
e Hermnio Vieira Filho.
Copyright c
2006FTC EaD
Todos os direitos reservados e protegidos pela lei 9.610 de 19/02/98. proibida a reproduo total ou parcial, por quaisquer meios, sem autorizao prvia, por escrito, da FTC EaD -
Faculdade de Tecnologia e Cincias - Ensino distncia.
www.ftc.br/ead
7/25/2019 Clculo i - Ead - Ftc
4/74
Sumrio
Limites 6
Limites de Funes Reais 61.1 Definies e Exemplos de Limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Noo Intuitiva de Limite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Exerccios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Limites Laterais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Exerccios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Propriedades dos Limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Limite de uma Funo Polinomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 Exerccios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.5 Limite de uma Funo Racional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Limites Infinitos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.1 Propriedades dos Limites Infinitos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6.2 Exerccios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Limites no Infinito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8 Propriedades dos Limites no Infinito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.8.1 Exerccios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.9 Gabarito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Limites das Funes Transcendentes 242.1 Funes Contnuas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.1 Exerccios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Limites Fundamentais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 Exerccios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Outros Teoremas sobre Limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Gabarito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Derivadas 32
Derivada das Funes Reais 323.1 A Reta Tangente e a Derivada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.1 Exerccios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Derivada da Funo Composta (Regra da Cadeia) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Derivada da Funo Inversa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Derivada das Funes Exponencial e Logartmica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 Exerccios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Derivada das Funes Trigonomtricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Tabela de Derivadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.1 Exerccios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.6 Derivada das Funes Trigonomtricas Inversas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.1 A Funo Arco Seno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3
7/25/2019 Clculo i - Ead - Ftc
5/74
Clculo I
3.6.2 A Funo Arco Cosseno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.3 As Derivadas das Funes Arco Seno e Arco Cosseno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Derivadas Sucessivas ou de Ordem Superior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.8 Derivao Implcita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.8.1 Exerccios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.9 Gabarito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Aplicaes da Derivada 49
49
4.1 O Teorema de LHospital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.1 Exerccios Propostos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Diferencial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Taxa de Variao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Intervalos de Crescimento e de Decrescimento.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51I n t e rp re t a o G e o m t r i c a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .