40
UNIVERSIDADE FEDERAL DE SERGIPE PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA MESTRADO EM EDUCAÇÃO FÍSICA EFEITOS DE DIFERENTES VOLUMES DE TREINAMENTO RESISTIDO SOBRE AS FORÇAS MUSCULAR E RESPIRATÓRIA DE IDOSAS ODILON SALIM COSTA ABRAHIN São Cristóvão 2015

EFEITOS DE DIFERENTES VOLUMES DE TREINAMENTO … · Dissertação apresentada ao Programa de ... o sistema neuromuscular e respiratório desta população são ... 2.2 Benefícios

Embed Size (px)

Citation preview

UNIVERSIDADE FEDERAL DE SERGIPE

PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA

MESTRADO EM EDUCAÇÃO FÍSICA

EFEITOS DE DIFERENTES VOLUMES DE TREINAMENTO

RESISTIDO SOBRE AS FORÇAS MUSCULAR E

RESPIRATÓRIA DE IDOSAS

ODILON SALIM COSTA ABRAHIN

São Cristóvão

2015

ii

UNIVERSIDADE FEDERAL DE SERGIPE

PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA

MESTRADO EM EDUCAÇÃO FÍSICA

EFEITOS DE DIFERENTES VOLUMES DE TREINAMENTO

RESISTIDO SOBRE AS FORÇAS MUSCULAR E

RESPIRATÓRIA DE IDOSAS

ODILON SALIM COSTA ABRAHIN

Dissertação apresentada ao Programa de Pós-Graduação em Educação Física da Universidade Federal de Sergipe como requisito para obtenção do grau de Mestre em Educação Física

Orientador: Prof. Dr. Anderson Carlos Marçal

São Cristóvão

2015

iii

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL

UNIVERSIDADE FEDERAL DE SERGIPE

A159s

Abrahin, Odilon Salim Costa

Efeitos de diferentes volumes de treinamento resistido sobre

as força muscular e respiratória de idosas / Odilon Salim

Costa Abrahin; orientador Anderson Carlos Marçal. – São

Cristóvão, 2015.

19 f. : il.

Dissertação (mestrado em Educação Física) –

Universidade Federal de Sergipe, 2015.

1. Exercícios físicos – Aspectos da saúde. 2. Aptidão física em idosos. 3. Musculação. I. Marçal, Anderson Carlos, orient. II. Título.

CDU 796.015.52-053.9

iv

ODILON SALIM COSTA ABRAHIN

EFEITOS DE DIFERENTES VOLUMES DE TREINAMENTO

RESISTIDO SOBRE AS FORÇAS MUSCULAR E

RESPIRATÓRIA DE IDOSAS

Dissertação apresentada ao Programa de Pós-Graduação em Educação Física da Universidade Federal de Sergipe como requisito para obtenção do grau de Mestre em Educação Física

Aprovada em ____/____/____

Orientador: Prof. Dr. Anderson Carlos Marçal

1º Examinador: Prof. Dr. Silvan Silva de Araujo

2º Examinador: Prof. Dr. Marzo Edir da Silva Grigoletto

PARECER

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

v

Dedicatória

Para Deus, família, professores e pais, por terem ensinado tudo que sei hoje, vocês são meus exemplos de caráter, dedicação e perseverança. MUITO OBRIGADO!

vi

Agradecimentos

A minha MÃE Eliceia, pelo seu amor, carinho e compreensão nos

momentos difíceis, TE AMO.

A minha família por TODOS os momentos, sem vocês nada disso valeria à

pena.

Ao meu AMOR Rejane Pequeno, sua companhia é essencial na minha

vida.

Ao orientador Prof. Dr. Anderson Carlos Marçal, por seus ensinamentos e

sua incansável busca pelo conhecimento. OBRIGADO!

Aos AMIGOS do Laboratório de Exercício Resistido e Saúde.

A todos os estudantes que compõem o laboratório de Núcleo de Pesquisa

em Sinalização Intracelular (NUPESIN) pelo conhecimento e ajuda.

Ao meu avô Odilon das Chagas Costa (in memorian), eterno amor.

A nossa turma por todos os momentos juntos, em especial aos amigos

João Paulo e Josivan.

A minha irmã por todos os anos de companheirismo.

Aos professores do Programa de Pós-graduação em Educação Física.

A DEUS por estar sempre ao meu lado. O SENHOR NUNCA nos

abandona! OBRIGADO.

vii

ABRAHIN, OSC. EFEITOS DE DIFERENTES VOLUMES DE TREINAMENTO

RESISTIDO SOBRE AS FORÇAS MUSCULAR E RESPIRATÓRIA DE IDOSAS.

Sergipe: Universidade Federal de Sergipe. Educação Física. 2015, 19f.

Resumo

Introdução: Os sistemas neuromuscular e respiratório são significativamente

afetados durante o envelhecimento sedentário, contudo estas modificações

podem ser minimizadas/atenuadas pela prática do treinamento resistido.

Objetivo: Comparar os efeitos de diferentes volumes de treinamento resistido

sobre a pressão muscular inspiratória (Pimax), pressão muscular expiratória

(Pemax), desempenho funcional e força muscular de idosas.

Métodos: Dezenove mulheres idosas foram divididas randomicamente em dois

grupos, série simples (1-SET) ou três séries (3 SET) de exercícios resistidos. O

teste de sentar e levantar, Pemax, Pimax e força muscular foram avaliados antes

e após 24 sessões de treinamento. O treinamento resistido progressivo foi

realizado durante 12 semanas com frequência de duas vezes por semana, entre

8-12 repetições, utilizando-se os principais grupos musculares dos membros

superiores e inferiores.

Resultados: Os principais resultados demonstram que ocorreram aumentos

significativos na Pemax (p<0,05; 1-SET: 34,6%; 3-SET: 35,8%) e Pimax (p<0,05;

1-SET: 13,7%; 3-SET: 11,2%). Ambos os grupos também melhoraram no teste de

sentar e levantar (p<0,05; 1-SET: 10.6%; 3-SET: 17.1%). Após 24 sessões de

treinamento resistido, a força muscular aumentou significativamente (p<0,001; 40-

80%) nos grupos. A comparação intergrupo não revelou diferença significativa em

nenhum parâmetro analisado.

Conclusão: Séries simples e múltiplas de treinamento resistido melhoram a

Pemax, Pimax, força muscular e o desempenho funcional no teste de sentar e

levantar após 24 sessões de treinamento. Estes resultados sugerem que

mulheres idosas que não possuem o hábito de praticar atividade física podem

iniciar programas de séries simples de treinamento resistido, como estratégia de

curto tempo para a manutenção da saúde.

viii

Palavras Chaves: Treinamento resistido; Pressão inspiratória máxima; Pressão

expiratória máxima; Força muscular; Idosas.

ix

ABRAHIN, OSC. THE EFFECTS OF DIFFERENT VOLUMES OF RESISTANCE

TRAINING ON MUSCLE STRENGTH AND RESPIRATORY MUSCLE

STRENGTH IN ELDERLY WOMEN. Sergipe: Universidade Federal de Sergipe.

Educação Física. 2015, 19f.

Abstract

Introduction: The neuromuscular and respiratory systems are significantly

affected during the sedentary aging, but these modifications can be

minimized/attenuated by practice of resistance training

Purpose: Compare the effects of different volumes of resistance training on the

maximum inspiratory pressure (MIP), maximum expiratory pressure (MEP),

functional performance, and muscle strength in elderly women.

Methods: Nineteen elderly women were randomly assigned to a group performing

either single sets (1-SET) or three sets (3-SET) of exercises. The sit-to-stand test,

MIP, MEP, and muscle strength were assessed before and after 24 training

sessions. Progressive resistance training was performed two times per week for a

total of 8–12 repetitions, using the main muscle groups of the upper and lower

limbs.

Results: The main results showed that the participants significantly increased their

MEP (p<0,05; 1-SET: 34,6%; 3-SET: 35,8%) and MIP (p<0,05; 1-SET: 13,7%; 3-

SET: 11,2%). Both groups also improved in the sit-to-stand test (p<0,05; 1-SET:

10,6%; 3-SET: 17,1%). After 24 training sessions, muscle strength also

significantly increased (p<0,0001; 40–80%) in both groups. An intergroup

comparison did not show any statistically significant differences between the

groups in any of the parameters analyzed.

Conclusion: Single- and multiple-set resistance training programs increased MIP,

MEP, muscle strength, and sit-to-stand test performance in elderly women after 24

sessions of training. In conclusion, our results suggested that elderly women who

are not in the habit of physical activity may start with single-set resistance training

programs as a short-term strategy for the maintenance of health.

x

Keywords: Resistance exercise; Maximum inspiratory pressure, Maximum

expiratory pressure; Elderly.

xi

SUMÁRIO

I – Introdução................................................................................................... 1

II – Revisão de Literatura................................................................................. 3

2.1 Envelhecimento: um fenômeno mundial.................................................... 3

2.2 Benefícios do Treinamento Resistido Em Idosos...................................... 4

2.3 Força Muscular.......................................................................................... 6

2.4 Força Muscular Respiratória...................................................................... 8

2.5 Treinamento Resistido e Força Muscular Respiratória.............................. 10

III – Objetivos................................................................................................... 11

3.1 Geral.......................................................................................................... 11

3.2 Específicos................................................................................................. 11

IV – Desenvolvimento (Artigo) ........................................................................ 12

V – Conclusão.................................................................................................. 13

Referências...................................................................................................... 14

Anexo....................................................................................................... ........ 19

xii

ÍNDICE DE FIGURAS

Figura 1. Ciclo da fragilidade

Figura 2. Adaptações neurais intramusculares e intermusculares

Figura 3. Adaptações fisiológicas (neurais e hipertróficas) desencadeadas pelo

treinamento resistido

xiii

LISTA DE FÓRMULAS, ABREVIATURA E SIGLAS

DMO – Densidade mineral óssea

Pemax – Força muscular expiratória

Pimax – Força muscular inspiratória

TR – Treinamento resistido

VO2máx – Volume máximo de oxigênio

1

I – INTRODUÇÃO

O envelhecimento populacional é um fenômeno global e está acontecendo

mais rápido nos países em desenvolvimento e de baixa renda (1,2). Em função

disto, as instituições governamentais têm estimulado a prática de hábitos

saudáveis, dentre eles, a prática regular de atividade física, com objetivo primário

de reduzir as taxas de morbidade e gastos públicos relacionados à saúde.

Nestas duas últimas décadas, aumentou consideravelmente o volume de

pesquisas na área de ciências do exercício e sua relação com a saúde e

qualidade de vida em grupos especiais. Atualmente, o treinamento resistido tem

sido utilizado na reabilitação e promoção da saúde em diversas populações,

especialmente em idosos (3), uma vez, que o processo do envelhecimento

sedentário está associado com modificações nas capacidades de adaptação e

físicas.

Dentre as principais mudanças que ocorrem durante o envelhecimento

sedentário, o sistema neuromuscular e respiratório desta população são

significativamente afetados, podendo apresentar redução da força e massa

muscular, redução da potência muscular, resistência, flexibilidade, VO2max, além

de perdas graduais de força dos músculos respiratórios. A disfunção do sistema

respiratório em geral reduz a tolerância ao exercício e aumenta as taxas de

morbimortalidade (4,5). Uma das formas primárias de prevenir ou atenuar as

perdas relacionadas à força muscular respiratória consiste no treinamento

específico dos músculos respiratórios, prática comum realizada pelos

fisioterapeutas e fisiatras (5).

O treinamento específico dos músculos respiratórios tem proporcionado

efeitos sobre a força muscular respiratória e endurance de atletas. Contudo,

recentes estudos têm indicado que o treinamento resistido também pode

aumentar a força dos músculos respiratórios (6,7). No melhor de nosso

conhecimento, nenhuma pesquisa científica avaliou os efeitos crônicos de

diferentes volumes de treinamento resistido sobre a força muscular respiratória de

mulheres idosas.

2

A principal hipótese deste estudo considerou que séries simples e múltiplas

de treinamento resistido acarretam ganhos similares de força dos músculos

respiratórios, força muscular e capacidade funcional em mulheres idosas após 12

semanas de treinamento.

3

II – REVISÃO DE LITERATURA

2.1 Envelhecimento: Um Fenômeno Mundial

O envelhecimento pode ser definido como um conjunto de modificações

biológicas que acarretam reduções graduais das capacidades de adaptação e

aumento da vulnerabilidade para inúmeros problemas de saúde, como as

doenças crônicas não transmissíveis e disfunções musculoesqueléticas. De

acordo com a World Health Organization em 2050, o número de idosos (>60

anos) será estimado em 2 bilhões, que corresponderá em cerca de 22% da

população mundial (1).

Em diversos países desenvolvidos, em desenvolvimento e de baixa renda,

a expectativa de vida está aumentando. Isto se deve em parte, ao avanço da

medicina e tecnologia, maior eficiência das estratégias de vacinação em larga

escala, prevenção de doenças infecciosas e aumento do acesso à rede pública de

saneamento (3). Desta forma, o envelhecimento populacional é um fenômeno

global (2), e atualmente está acontecendo mais rápido em países de baixa e

média renda (Cuba, Mongólia, entre outros).

Segundo a World Health Organization, foram necessários mais de 100

anos para que a França duplicasse sua população idosa de 7% para 14%. Em

contrapartida, países como o Brasil e China necessitarão cerca de 25 anos para

atingir o mesmo crescimento (2). Diante destas perspectivas, diversas instituições

e programas governamentais como: “Pessoas saudáveis” (Inglaterra); “Viver

ativo” (Canadá); “No Porto a vida é longa” (Portugal), “Agita Brasil” têm estimulado

a prática regular de atividade física, com o objetivo de proporcionar um

envelhecimento saudável, reduzir as taxas de morbidade e gastos públicos

relacionados à saúde (3,8).

No Brasil, a maioria dos estados têm adotado ações e programas que

estimulem a prática regular de atividade física em idosos (8). Dentre os diversos

tipos de atividade física, o treinamento resistido, ou contra resistência tem se

destacado pelos seus potenciais benefícios (3,9–14).

4

2.2 Benefícios do Treinamento Resistido em Idosos

O treinamento resistido (TR) é caracterizado pela tensão muscular com ou

sem movimentação articular contra alguma forma de resistência progressiva a

ação muscular. Ao longo destes anos, diversas pesquisas têm evidenciado os

benefícios do TR em diversas populações, principalmente em idosos sedentários,

como melhora da qualidade de vida, promoção da saúde e reabilitação (10,15,16).

Entretanto, para que os benefícios promovidos pelo TR ocorram de forma

eficiente e segura, torna-se necessário que a prescrição se ajuste as

características individuais, respeitando os princípios biológicos do treinamento,

assim como as variáveis que constituem o programa de treinamento, como:

intensidade, número de séries, repetições, intervalo entre séries e exercícios,

frequência, velocidade e ordem dos exercícios (10).

Os principais benefícios funcionais proporcionados pela prática do TR são:

aumento da força muscular, resistência muscular, flexibilidade, coordenação

motora, potência muscular, prevenção de lesões e diminuição da incidência de

quedas (6) (Tabela 1). Outras vantagens em diversos parâmetros fisiológicos

incluem a melhora do sistema cardiovascular e endócrino, perfil lipídico,

composição corporal, aumento da sensibilidade à insulina, massa muscular,

densidade mineral óssea (DMO), além do controle/redução da pressão arterial

(10,12,15–17)

Um estudo pioneiro publicado no Journal American Medical Association na

década de 90 avaliou os efeitos do TR de alta intensidade (80% 1RM) em idosos

nonagenários, os resultados demonstraram aumentos significativos nos níveis de

força muscular (174% ± 31%) e do volume muscular (9.0% ± 4.5%) após oito

semanas de treinamento (9). Ainda neste mesmo trabalho, os autores relataram

que a fraqueza muscular pode ser revertida, mesmo em idosos nonagenários.

Posteriormente outros trabalhos corroboraram com estes resultados em idosos

octogenários (18,19) e nonagenários (20).

A síndrome da fragilidade é um dos principais problemas de saúde que

ocorre no envelhecimento sedentário (21,22). Além disso, sua etiologia é de

5

origem multifatorial, associada à alta prevalência e incidência de quedas,

imobilidade e dependência funcional (Figura 1). Outra alteração que acomete o

sistema musculoesquelético desta população é a redução do volume das fibras

musculares, principalmente do tipo II (fibras de contração rápida) que interferem

nas repostas das atividades da vida diária, uma vez, que contribuem com o tempo

de reação, como consequências podem ocorrer perdas repentinas de equilíbrio

(9,16).

Figura 1. Inter-relações no ciclo da fragilidade (21).

Recentemente o termo sarcopenia tem sido utilizado para descrever a

perda acentuada e progressiva de massa muscular, força e potência muscular

(23). Esta disfunção musculoesquelética antecede a síndrome da fragilidade e

também foi associada à perda de DMO, desnervação muscular (23), redução da

taxa metabólica basal, aumento do risco de diabetes e síndrome metabólica (22),

aumento dos marcadores pró-inflamatórios (12) e taxa de mortalidade (24).

6

Uma meta-análise relatou forte associação entre o TR e o ganho de massa

magra em adultos acima de 50 anos (n=1328) (25). Além disso, estes autores

detectaram aumento de 1kg de massa magra, quer sejam em homem ou em

mulheres após 20 semanas de treinamento. Todavia, apesar deste ganho ter sido

aparentemente modesto, é conhecido na literatura que os idosos apresentam uma

perda média de 0,2kg de massa magra por ano (25).

Além disso, idosos com disfunções musculoesqueléticos submetidos ao TR

combinados com ingestão balanceada (adequada) dos macronutrientes não têm

sido objeto de investigações clínicas de forma crescente (22,26). Uma recente

meta-análise (27) evidenciou que a suplementação de proteína associada com o

TR em 215 idosos (62 ± 6 anos) aumentou a massa muscular e a força (1RM no

Leg press), 38% e 33% respectivamente quando comparado com o grupo

placebo. Baseado nesta evidência, a ingestão dos nutrientes de acordo com as

características individuais possivelmente potencializa as adaptações morfológicas

e neuromotoras nesta população associado à prática do TR.

2.3 Força Muscular

A produção da força muscular máxima atinge seu limite por volta da

segunda ou terceira década de vida, e por volta da quinta década, iniciam

declínios progressivos desta capacidade (11). Estas modificações estão

relacionadas principalmente com mudanças que acometem o sistema

neuromuscular, tais como: redução de ativação dos músculos agonistas,

diminuição da massa muscular (principalmente fibras do tipo II), diminuição da

área de contato entre o axônio e a membrana celular, redução do número e

função das células satélites (responsáveis pela manutenção, reparo, e

crescimento das miofibrilas). Além de outras modificações endócrinas (redução

dos níveis de testosterona, fatores de crescimento semelhante à insulina) que

também podem contribuir para os déficits de força muscular.

A força muscular é o principal benefício funcional ocasionado pelo TR, por

este motivo alguns praticantes e pesquisadores nomeiam também de treinamento

de força. O American College of Sports Medicine em seu último posicionamento

7

sobre atividade física em idosos relatou como Nível de Evidência Científica A, que

a prática do TR aumenta substancialmente a força muscular. A importância clínica

deste achado evidenciou que os déficits de força muscular estão associados com

aumento da taxa de morbimortalidade (10).

Outra meta análise (11) estimou que 18 semanas de TR em sujeitos acima

de 50 anos aumentam a força muscular cerca de 30% e 25%, nos membros

inferiores e superiores, respectivamente. Todavia, estes ganhos ainda podem ser

maximizados, devido, sobretudo a intensidade, tipo de exercício (multiarticular ou

monoarticular), nível de treinamento do sujeito e nutrição.

Os principais mecanismos fisiológicos que explicam os ganhos de força

são as adaptações neurais e hipertróficas. Neste sentido, as adaptações neurais

(Figura 2) podem ser classificadas em intramuscular, como: a maior ativação do

músculo agonista, aumento do número de unidades motoras recrutadas, aumento

da frequência de impulso das unidades motoras e inibição do órgão tendinoso de

golgi. A adaptação intermuscular consiste basicamente na redução co-contração

dos antagonistas e melhor coordenação entre o músculo agonista-sinergista (28).

8

Figura 2. Adaptações neurais intramusculares e intermusculares.

As adaptações neurais são as principais responsáveis pelo aumento de

força muscular nas primeiras semanas de treinamento, de modo que as

adaptações hipertróficas também ocorrem neste período inicial, porém em menor

magnitude. (Figura 3) (29). Posteriormente, a hipertrofia muscular passa a

predominar como mecanismo responsável pelo incremento da força muscular

(28–30). Todavia, ainda existem outras adaptações resultantes do TR (ex:

expansão nas dimensões da junção neuromuscular) que ainda não estão

descritas com clareza, devido, principalmente a carência de estudos longitudinais

(30).

Figura 3. Adaptações Fisiológicas (neurais e hipertróficas) desencadeadas pelo

TR. Adaptado de Sale (29).

9

2.4 Força Muscular Respiratória

A força muscular respiratória decresce progressivamente com a idade em

ambos os sexos, e estes declínios são maximizados a cada duas ou três décadas

em sujeitos sedentários saudáveis (31). Um estudo transversal brasileiro (31)

avaliou a força muscular inspiratória (Pimax) e força muscular expiratória (Pemax)

em 120 sujeitos de ambos os sexos (idade 20-89), os resultados demonstram

correlação negativa (moderada/alta) entre a idade e a força muscular respiratória

(Pimax e Pemax). Neder et al (32) e Costa et al (33) também encontraram forte

correlação negativa entre idade e a força dos músculos respiratórios.

Outros estudos têm associado baixos níveis de força muscular respiratório

com a força muscular geral, sarcopenia e fragilidade (34), especialmente em

idosos (34–36) e pacientes acamados (37). A fraqueza muscular respiratória está

relacionada com infecções respiratórias, hiperventilação, redução na capacidade

de exercício e aumento das taxas de morbimortalidade (4,34). Além disso, nas

doenças neuromusculares, as disfunções dos músculos respiratórios podem

preceder a insuficiência respiratória. Em função, de sua importância clínica, esta

capacidade começou a ser avaliada por alguns profissionais da área de saúde a

partir da década de 1970 (31,33).

A força muscular respiratória pode ser avaliada por meio de testes

estáticos e dinâmicos. Classicamente, as medidas estáticas inferem a Pimax e

Pemax, e estes parâmetros mensuram a pressão que está sendo gerada pela

ação dos músculos respiratórios. Adicionalmente, este é um teste utilizado

mundialmente, não invasivo, rápido e apresenta baixo custo. Sua principal

desvantagem normalmente consiste na falta de coordenação (técnica) do

avaliando, podendo induzir a um diagnóstico incorreto (5,38). Contudo, este

problema pode ser minimizado quando a avaliação é aplicada por um avaliador

experiente, normalmente realizando três medidas com diferença inferior a 10%

entre cada tentativa (5).

Estudos prévios têm demonstrado a eficiência do treinamento muscular

respiratório sobre a Pimax e Pemax em diversas populações (35,39), inclusive em

idosos (36,40). Estes ganhos ocorrem, devido principalmente a especificidade do

10

treinamento e consequente redução da fadiga dos principais músculos

respiratórios (reto do abdômen, oblíquo externo e interno, transverso do

abdômen, intercostais internos e externos, diafragma). Cader et al (40) avaliaram

os efeitos de 10 semanas de treinamento progressivo dos músculos inspiratórios

sobre a Pimax e autonomia funcional de idosos asilados, os resultados

evidenciaram ganhos significativos da Pimax e autonomia funcional do grupo

experimental em relação ao grupo controle.

2.5 Treinamento Resistido e Força Muscular Respiratória

Os profissionais da atividade física e esporte têm demonstrado interesse

em avaliar a força muscular respiratória, com objetivos de potencializar o

rendimento dos atletas de elite (41) e recreacionais (42). Uma meta-análise

evidenciou que o treinamento muscular respiratório foi efetivo na melhora da

performance esportiva (tempo de Endurance e Yo-Yo teste) (41). De maneira

geral, o treinamento melhorou a Pimax, Pemax e a resistência em diferentes

atletas, com exceção dos nadadores e mergulhadores.

Atualmente, os pesquisadores têm avaliado os efeitos do TR em diversos

parâmetros fisiológicos, inclusive no sistema respiratório (6,7). Um estudo

investigou os efeitos do treinamento de flexibilidade (facilitação neuromuscular

proprioceptiva), combinado com o TR (resistência de bandas elásticas) sobre a

força muscular respiratória em mulheres adultas, os resultados evidenciaram

aumentos significativos na Pimax e Pemax após quatro semanas de treinamento

em comparação com o grupo controle. Não obstante, neste estudo não se pode

afirmar que a Pimax e Pemax aumentou devido somente ao TR, uma vez, que os

pesquisadores combinaram com treinamento de flexibilidade.

Um estudo transversal (43) publicado por nosso grupo de pesquisa

comparou a Pimax e Pemax de idosos treinados exclusivamente com pesos

(período > seis meses) e sedentários. Os resultados demonstram que os idosos

treinados apresentaram níveis de Pimax e Pemax superiores aos sedentários.

Além disso, o grupo exercitado apresentou nível de força muscular respiratório

acima do recomendado para sua faixa etária conforme a classificação de Neder et

11

al (32). Este achado problematizou a seguinte pergunta: qual a dose resposta do

TR sobre a Pimax e Pemax de idosas?

12

III – OBJETIVOS

3.1 Geral

Avaliar os efeitos de séries simples e múltiplas de treinamento resistido

sobre as forças muscular e respiratória de idosas

3.2 Específicos

- Avaliar os efeitos de séries simples e múltiplas de treinamento resistido

sobre o desempenho funcional de idosas no teste de sentar e levantar.

- Comparar a força muscular e força dos músculos respiratórios após

programas de séries simples e múltiplas de treinamento resistido em idosas.

13

IV –DESENVOLVIMENTO (ARTIGO EM ANEXO)

Os resultados obtidos durante o Mestrado em Educação Física, bem como

a metodologia e a discussão foram sistematizados no formato de um artigo

científico intitulado “Single- and multiple-set resistance training improves skeletal

and respiratory muscle strength in elderly women”, este trabalho foi aceito pela

revista Clinical Interventions in Aging (fator de impacto = 1,82), classificada como

B1 na área de Educação Física até a presente data (02/06/15).

14

V – CONCLUSÃO

Os resultados do presente estudo demonstram que séries simples e

múltiplas de treinamento resistido aumentam similarmente a força muscular

respiratória e força muscular, assim como o desempenho funcional no teste de

sentar e levantar em idosas após 24 sessões de treinamento.

15

REFERÊNCIAS

1. WHO | Good health adds life to years. World Health Organization; [cited 2014 Jul 23]; Available from: http://www.who.int/ageing/publications/whd2012_global_brief/en/#.

2. WHO | Interesting facts about ageing. World Health Organization; [cited 2014 Jul 23]; Available from: http://www.who.int/ageing/about/facts/en/#.

3. Romo V, Schwingel A, Chodzko-Zajko W. International resistance training recommendations for older adults: Implications for the promotion of healthy aging in Spain. Journal of Human Sport and Exercise. 2011;6(4):639–48.

4. Sin DD, Wu L, Man SFP. The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature. Chest. 2005;127(6):1952–9.

5. Gibson GJ, Whitelaw W, Siafakas N, Supinski GS, Fitting JW, Bellemare F, et al. ATS/ERS Statement on respiratory muscle testing. American Journal of Respiratory and Critical Care Medicine. 2002;166(4):518–624.

6. Hackett DA, Johnson NA, Chow C-M. High-volume resistance training session acutely diminishes respiratory muscle strength. Journal of Sports Science & Medicine. 2012;11(1):26–30.

7. Areas GPT, Borghi-Silva A, Lobato AN, Silva AA, Freire RC, Areas FZS. Effect of upper extremity proprioceptive neuromuscular facilitation combined with elastic resistance bands on respiratory muscle strength: a randomized controlled trial. Brazilian Journal of Physical Therapy. 2013;17(6):541–6.

8. Salin MS, Mazo GZ, Cardoso AS, Garcia GS. Atividade física para idosos: diretrizes para implantação de programas e ações. Revista Brasileira de Geriatria e Gerontologia. 2011;14(2):197–208.

9. Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians. Effects on skeletal muscle. The Journal of the American Medical Association.1990;263(22):3029–34.

10. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Medicine and Science in Sports and Exercise. 2009;41(7):1510–30.

11. Peterson MD, Rhea MR, Sen A, Gordon PM. Resistance exercise for muscular strength in older adults: a meta-analysis. Ageing Research Reviews. 2010;9(3):226–37.

16

12. Ogawa K, Sanada K, Machida S, Okutsu M, Suzuki K. Resistance exercise training-induced muscle hypertrophy was associated with reduction of inflammatory markers in elderly women. Mediators of Inflammation. 2010;2010:171023.

13. Radaelli R, Botton CE, Wilhelm EN, Bottaro M, Lacerda F, Gaya A, et al. Low- and high-volume strength training induces similar neuromuscular improvements in muscle quality in elderly women. Experimental Gerontology. 2013;48(8):710–6.

14. Peterson MD, Gordon PM. Resistance exercise for the aging adult: clinical implications and prescription guidelines. The American Journal of Medicine. 2011;124(3):194–8.

15. Winett RA, Carpinelli RN. Potential health-related benefits of resistance training. Preventive Medicine. 2001;33(5):503–13.

16. Westcott WL. Resistance training is medicine: effects of strength training on health. Current Sports Medicine Reports. 2012;11(4):209–16.

17. Queiroz ACC, Kanegusuku H, Forjaz CLM. Efeitos do treinamento resistido sobre a pressão arterial de idosos. Arquivos Brasileiros de Cardiologia. 2010;95(1):135–40.

18. Krist L, Dimeo F, Keil T. Can progressive resistance training twice a week improve mobility, muscle strength, and quality of life in very elderly nursing-home residents with impaired mobility? A pilot study. Clinical Interventions in Aging. 2013;8:443–8.

19. Kalapotharakos VI, Diamantopoulos K, Tokmakidis SP. Effects of resistance training and detraining on muscle strength and functional performance of older adults aged 80 to 88 years. Aging Clinical and Experimental Research. 2010;22(2):134–40.

20. Serra-Rexach JA, Bustamante-Ara N, Hierro Villarán M, González Gil P, Sanz Ibáñez MJ, Blanco Sanz N, et al. Short-term, light- to moderate-intensity exercise training improves leg muscle strength in the oldest old: a randomized controlled trial. Journal of the American Geriatrics Society. 2011;59(4):594–602.

21. Macedo C, Gazzola JM, Najas M. Síndrome da fragilidade no idoso: importância da fisioterapia. Arquivos Brasileiros de Ciências da Saúde. 2008;33(3):177–84.

22. Sundell J. Resistance Training Is an Effective Tool against Metabolic and Frailty Syndromes. Advances in Preventive Medicine. 2011;2011:984683.

17

23. Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporosis International. 2010;21(4):543–59.

24. Fitzgerald SJ, Barlow CE, Kampert JB, Morrow JR, Jackson AW, Blair SN. Muscular Fitness and All-Cause Mortality : Prospective Observations. Journal of Physical Activity and Health. 2004;1:7–18.

25. Peterson MD, Sen A, Gordon PM. Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Medicine and Science in Sports and Exercise. 2011;43(2):249–58.

26. Tieland M, Dirks ML, Van der Zwaluw N, Verdijk LB, Van de Rest O, Groot LCPGM, et al. Protein supplementation increases muscle mass gain during prolonged resistance-type exercise training in frail elderly people: a randomized, double-blind, placebo-controlled trial. Journal of the American Medical Directors Association. 2012;13(8):713–9.

27. Cermak NM, Res PT, Groot LCPGM, Saris WHM, Van Loon LJC. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. The American Journal of Clinical Nutrition. 2012;96(6):1454–64.

28. Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Medicine. 2006;36(2):133–49.

29. Sale DG. Neural adaptation to resistance training. Medicine and Science in Sports and Exercise. 1988;20:S135–S145.

30. Häkkinen K, Alen M, Kallinen M, Newton RU, Kraemer WJ. Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. European Journal of Applied Physiology. 2000;83(1):51–62.

31. Simões RP, Deus APL, Auad MA, Dionísio J, Mazzonetto M, Borghi-Silva A. Maximal respiratory pressure in healthy 20 to 89 year-old sedentary individuals of central São Paulo State. Revista Brasileira de Fisioterapia. 2010;14(1):60–7.

32. Neder JA, Andreoni S, Lerario MC, Nery LE. Reference values for lung function tests: II. Maximal respiratory pressures and voluntary ventilation. Brazilian Journal of Medical and Biological Research. 1999;32(6):719–27.

33. Costa D, Gonçalves HA, Lima LP, Ike D, Cancelliero KM, Montebelo MI de L. Novos valores de referência para pressões respiratórias máximas na população brasileira. Jornal Brasileiro de Pneumologia. 2010;36(3):306–12.

18

34. Vaz Fragoso CA, Enright PL, McAvay G, Van Ness PH, Gill TM. Frailty and respiratory impairment in older persons. The American Journal of Medicine. 2012;125(1):79–86.

35. Beckerman M, Magadle R, Weiner M, Weiner P. The effects of 1 year of specific inspiratory muscle training in patients with COPD. Chest. 2005;128(5):3177–82.

36. Watsford M, Murphy A. The effects of respiratory-muscle training on exercise in older women. Journal of Aging and Physical Activity. 2008;16(3):245–60.

37. Cader SA, Souza Vale RG, Zamora VE, Costa CH, Dantas EHM. Extubation process in bed-ridden elderly intensive care patients receiving inspiratory muscle training: a randomized clinical trial. Clinical Interventions in Aging. 2012;7:437–43.

38. Severino FG, Resqueti VR, Bruno SS, Azevedo IG, Vieira RHG, Fregonezi GAF. Comparação entre o manovacuômetro nacional e o importado para medida da pressão inspiratória nasal. Revista Brasileira de Fisioterapia. 2010;14(5):426–31.

39. Gomieiro LTY, Nascimento A, Tanno LK, Agondi R, Kalil J, Giavina-Bianchi P. Respiratory exercise program for elderly individuals with asthma. Clinics. 2011;66(7):1163–9.

40. Cader S, Silva EB, Vale R, Bacelar S, Monteiro MD DE. Efeito do treino dos músculos inspiratórios sobre a pressão inspiratória máxima e a autonomia funcional de idosos asilados. Motricidade. 2007;1(3):279–88.

41. HajGhanbari B, Yamabayashi C, Buna TR, Coelho JD, Freedman KD, Morton TA, et al. Effects of respiratory muscle training on performance in athletes: a systematic review with meta-analyses. Journal of Strength and Conditioning Research. 2013;27(6):1643–63.

42. Illi SK, Held U, Frank I, Spengler CM. Effect of respiratory muscle training on exercise performance in healthy individuals: a systematic review and meta-analysis. Sports Medicine. 2012;42(8):707–24.

43. Nascimento VC, Trindade J, Oliveira E, Sousa EC, Abrahin O. Efeitos dos exercícios resistidos nos indicadores de normalidade de força dos músculos respiratórios de idosos. The FIEP Bulletin. 2013;83:151–4.

19

VII – ANEXO

Artigo 1

Abrahin O, Rodrigues RP, Nascimento VC, Da Silva-Grigoletto ME, Sousa EC, Marçal AC. Single- and multiple-set resistance training improves skeletal and respiratory muscle strength in elderly women. Clinical Interventions in Aging, 9: 1775–1782, 2014.

© 2014 Abrahin et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Clinical Interventions in Aging 2014:9 1775–1782

Clinical Interventions in Aging Dovepress

submit your manuscript | www.dovepress.com

Dovepress 1775

O r I g I n A l r e s e A r C h

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/CIA.S68529

single- and multiple-set resistance training improves skeletal and respiratory muscle strength in elderly women

Odilon Abrahin1–3

rejane P rodrigues1–3

Vanderson C nascimento3

Marzo e Da silva-grigoletto1,4

evitom C sousa3

Anderson C Marçal1,2

1Department of Physical education, Federal University of sergipe, sergipe, Brazil; 2Center of research in Intracellular signaling, Department of Morphology, Federal University of sergipe, sergipe, Brazil; 3laboratory of resistance exercise and health, sports Department, University of Pará state, Belem, Brazil; 4scientific sport, sergipe, Brazil

Introduction: Aging involves a progressive reduction of respiratory muscle strength as well

as muscle strength.

Purpose: Compare the effects of resistance training volume on the maximum inspiratory

pressure (MIP), maximum expiratory pressure (MEP), functional performance, and muscle

strength in elderly women.

Methods: Thirty elderly women were randomly assigned to a group performing either single

sets (1-SET) or three sets (3-SET) of exercises. The sit-to-stand test, MIP, MEP, and muscle

strength were assessed before and after 24 training sessions. Progressive resistance training was

performed two times per week for a total of 8–12 repetitions, using the main muscle groups of

the upper and lower limbs.

Results: The main results showed that the participants significantly increased their MEP

(P,0.05; 1-SET: 34.6%; 3-SET: 35.8%) and MIP (P,0.05; 1-SET: 13.7%; 3-SET: 11.2%).

Both groups also improved in the sit-to-stand test (P,0.05; 1-SET: 10.6%; 3-SET: 17.1%).

After 24 training sessions, muscle strength also significantly increased (P,0.0001; 40%–80%)

in both groups. An intergroup comparison did not show any statistically significant differences

between the groups in any of the parameters analyzed.

Conclusion: Single- and multiple-set resistance training programs increased MIP, MEP,

muscle strength, and sit-to-stand test performance in elderly women after 24 sessions of train-

ing. In conclusion, our results suggested that elderly women who are not in the habit of physical

activity may start with single-set resistance training programs as a short-term strategy for the

maintenance of health.

Keywords: resistance exercise, maximum inspiratory pressure, maximum expiratory pressure,

elderly

IntroductionAging can be defined as a process of biological modifications involving a gradual

reduction in the capacity to adapt, and an increase in vulnerability to countless health

issues such as chronic noncommunicable diseases and musculoskeletal disorders.

According to the World Health Organization, by 2050, the number of elderly people

(older than 60 years) is estimated to reach 2 billion, corresponding to approximately

22% of the global population.1

In general terms, sedentary aging involves a reduction in physical capacity, in asso-

ciation with functional deficits, such as reduced levels of respiratory muscle strength

and muscle strength, reduced cardiorespiratory capacity, and reduced mobility, all of

which make completing daily activities more difficult.2–4 A recent study established a

strong association between poor physical fitness and respiratory disorders.4

Correspondence: Anderson Carlos MarçalUniversidade Federal de sergipe, Centro de Ciências Biológicas e da saúde, Cidade Universitária Prof José Aloísio de Campos, Jardim rosa elze, Cep: 49100-000, são Cristóvão, sergipe, BrazilFax +55 79 2105 6622email [email protected]

Journal name: Clinical Interventions in AgingArticle Designation: Original ResearchYear: 2014Volume: 9Running head verso: Abrahin et alRunning head recto: Resistance training and respiratory muscle strengthDOI: http://dx.doi.org/10.2147/CIA.S68529

Clinical Interventions in Aging 2014:9submit your manuscript | www.dovepress.com

Dovepress

Dovepress

1776

Abrahin et al

Dysfunction in the respiratory muscles can lead to

hyperventilation, reduction in exercise tolerance, and

even respiratory insufficiency; also, it is associated with

an increase in morbidity and mortality rates.4,5 The evalu-

ation of respiratory muscle strength is of great clinical

importance and can be measured by static and dynamic

maneuvers.6–9 Static maneuvers infer maximal inspiratory

pressure (MIP) and maximal expiratory pressure (MEP).

These parameters, evaluated through the mouth, reflect

the pressure that is being generated by the action of the

respiratory muscles.6–9

Specific respiratory muscle training has had significant

effects on the respiratory muscle strength and endurance

of athletes.10 However, few scientific studies suggest that

resistance training can be used for improving respiratory

muscle strength.11,12 To the best of our knowledge, no study

has investigated the chronic effect of resistance training (RT)

volume on the respiratory muscles in elderly women. There-

fore, the aim of the present study was to compare the effects

of RT volume on the MIP, MEP, functional performance,

and muscle strength in elderly women.

MethodssubjectsThe inclusion criteria required the women to be nonsmok-

ers and between 60 and 80 years of age, with previous

experience of RT (minimum 6 months, uninterrupted), but

without participation in any type of physical exercise dur-

ing the preceding 3 months. Volunteers who had any type

of musculoskeletal, cardiovascular, or neurological disorder

that complicated RT were excluded, as were women who

could not complete the 24 training sessions.

Thirty elderly women from the local community agreed

to participate in this study. The volunteers were randomly

divided into two groups: 1-SET (n=15), and 3-SET (n=15).

By the end of the study, 19 participants had successfully

completed the study protocol (1-SET, n=11; 3-SET, n=8);

the reasons for dropout were not related to adverse events

associated with the protocol, and the participants who did not

complete 24 training sessions or who missed four consecutive

sessions were excluded (Figure 1).

All participants presented a medical certificate and signed

the Termo de Consentimento Livre e Esclarecido (informed

consent form) for their participation in this research. The study

was approved by the Research Ethics Committee of Univer-

sidade da Amazônia (CAAE [certificate of presentation for

ethical consideration] number: 12941013.5.0000.5173), in

accordance with both the regulations of Resolution 196/96 of

Conselho Nacional de Pesquisa Envolvendo Seres Humanos

(National Council on Ethics in Human Research) and the

Declaration of Helsinki.

ProceduresThe participants initially performed two sessions of training

in order to learn the exercises. Thereafter, they attended an

additional four sessions. During the first session, anthro-

pometry and functional performance were assessed with the

sit-to-stand test. On the second visit, MIP and MEP were

Figure 1 Flowchart of the volunteer selection process in different stages of the study.Abbreviations: 1-seT, single set; 3-seT, three sets.

Randomly divided sample (n=30)

1-SET(n=15)

Excluded (n=4)– Personal problems (n=2)– Incomplete protocol (n=2)

Completed trainingprotocol (n=11)

3-SET(n=15)

Excluded (n=7)– Personal problems (n=3)– Incomplete protocol (n=4)

Completed trainingprotocol (n=8)

Clinical Interventions in Aging 2014:9 submit your manuscript | www.dovepress.com

Dovepress

Dovepress

1777

resistance training and respiratory muscle strength

assessed. On the third and fourth visits, testing and retest-

ing 10 maximum repetitions (MR) were conducted. After

24 sessions of progressive RT, the tests were reassessed in

the same sequence and by the same evaluator.

sit-to-stand in 30 secondsThe assessment was started using a chair with a height of

43 cm; the volunteer sat in the middle of the seat, with a

straight spinal column, feet resting on the ground and arms

crossed against the chest. When signaled, the volunteer was

encouraged to fully sit and stand as many times as possible

in 30 seconds. The test was performed as described by Rikli

and Jones.13 All patients were familiarized with the testing,

and the best time of two attempts was used.

AnthropometryFor the measurement of waist and abdominal circumfer-

ence, a flexible metallic tape measure with precise 0.1 cm

markings was used (Sanny, São Paulo, Brazil). Body

fat percentages were estimated using a Skinfold Caliper

(Harpenden, London, UK) and an analog scale with a

stadiometer, having a 180 kg capacity in 100 g divisions.

Skinfold thicknesses were measured according to the

standard set by the Durnin and Womersley14 equation for

elderly women, and the Siri15 equation. All measures were

taken by an International Society for the Advancement of

Kinanthropometry Level 3 anthropometrist with at least

10 years of experience, with reliability tested by technical

error of measurement, as proposed by Norton and Olds,16

being lower than 2%.

Maximum inspiratory pressure and maximum expiratory pressureMIP and MEP were measured in stages using an analog

manometer (MV 300; Wika, São Paulo, Brazil), with a pres-

sure range of -300 cmH2O to +300 cmH

2O. Both MIP and

MEP measurements were performed with a plastic tube 3 cm

in diameter and 15 cm long, with a plastic flanged mouthpiece

and a small air leak 7.5 cm from the mouthpiece. The small

leak in the tube was necessary to prevent generation of high

buccal pressures. In addition, subjects were required to hold

their cheeks with one hand during the performances. Verbal

encouragement was given to the subjects during testing, to

ensure that motivation levels remained high. Measurements

followed the recommendations of the American Thoracic

Society/European Respiratory Society6 and were conducted

three times for each participant by an experienced evaluator.

The highest value was used for the analysis. In cases where

a difference exceeding 10% was found between repeated

measurements, the exercise was repeated to obtain the highest

measurement, but not necessarily the final one.6,7

Muscle strength (10 Mr)Muscle strength was assessed by MR tests in accordance with

American College of Sports Medicine17 recommendations,

using bench press, deadlift, unilateral rowing, and standing

calf raise. All participants underwent two test sessions, with

an interval of .48 hours between sessions. The test and

retesting were conducted in the same order, to minimize

possible errors in the 10 MR tests. Each session comprised

one set of warm-ups, with an estimated 50% load on the

first attempt and up to three consecutive attempts, in order

to manage a load of 10 MR. The recovery interval between

attempts was 5 minutes.

resistance training programThe 1-SET (n=11) and 3-SET (n=8) groups conducted RT

two times per week for 12 weeks, with a minimum of 48 hours

between sessions. All sessions were conducted in the Labo-

ratory of Resistance Training and Health, and participants

were instructed to maintain their daily activities and normal

eating habits throughout the 24 training sessions.

Both groups conducted the following exercises: bench

press, deadlift, unilateral rowing, standing calf raise, and

lower abdominal exercise. Such exercises involve the major

muscle groups of the upper and lower limbs and simulate

the basic movements of daily activities. All exercises were

performed in the same order, with an intensity of 8–12 MR.

The participants were instructed to adjust their training

load in order to guarantee submaximal/maximal strength

between 8 and 12 MR. The following characteristics were

observed in the technical performance of the exercises:

tendency for concentric muscle failure and reduction in

rhythm, apnea, and isometry. If the volunteers were able

to complete 12 repetitions of an exercise in each of two

consecutive training sessions, the loads were increased

by 5%.17 All sessions were supervised and involved small

groups of up to six participants, to ensure that each exer-

cise technique was performed correctly, safely, and to the

appropriate intensity.

In each experimental group (1-SET and 3-SET), the type

of training method alternated by segment.17 Other RT vari-

ables, including intensity, repetitions, speed, order, interval,

and weekly frequency were the same for both groups; the

only difference between the groups was the number of sets

(Table 1).

Clinical Interventions in Aging 2014:9submit your manuscript | www.dovepress.com

Dovepress

Dovepress

1778

Abrahin et al

Training sessionsThe single- and multiple-set protocols had a maximum

duration of 20 minutes and 50 minutes, respectively. At

the beginning of each session, the individuals performed

a warm-up of approximately 5 minutes in duration. The

warm-up involved exercises for the upper and lower limbs:

shoulder adduction and abduction, torso rotation, hip flex-

ion and extension, knee flexion and extension, and ankle

flexion and extension.

Variable reproducibilityThe test and retest for 10 MR was conducted using an interval

of 48 hours. The intraclass correlation coefficients were 0.90,

0.94, 0.77, and 0.82 for bench press, deadlift, rowing, and

standing calf raise, respectively. All volunteers were familiar

with all the tests, as they had participated in other projects

within the laboratory during the previous semester.

statistical analysisTraditional statistical methods were used to calculate mean ±

standard deviation. Sample normality was calculated using

the Shapiro–Wilk test. The effect of the different interven-

tions single- versus multiple-set (independent variables) on

MIP, MEP, and muscular strength (dependent variables) were

analyzed by means of ANOVA (2×2). A Sidak correction was

used to adjust the P-value regarding the number of contrasts

performed, and a P,0.05 criterion was used to establish

statistical significance. Reproducibility was assessed using

an intraclass correlation coefficient, and effect size was

calculated for paired variables. The SPSS 18 package (IBM

Corp., Armonk, NY) for Windows was used for all statisti-

cal tests.

On the basis of a pilot study (four subjects), as well

as available literature, a power analysis was performed to

determine the appropriate number of subjects. Eight subjects

(per group) were required to detect a minimum difference

of 12 cmH2O for MIP and 10 cmH

2O for MEP (Granmo 5.2

for Windows; IMIM, Barcelona, Spain), which would be

required to achieve 80% statistical power.

ResultsThe characteristics of the women in this study are presented in

Table 2. There were no significant differences in age, weight,

body mass index, body fat percentage, or waist and abdomen

circumferences between the groups at the beginning of the

study. Furthermore, these variables were not significantly

different after training.

The 1-SET and 3-SET groups significantly improved

(P,0.05) in the MEP (pre: 79.5±20.5 cmH2O; post: 105.5±24.6

cmH2O; effect size: 1.27) and (pre: 76.3±10.9 cmH

2O;

Table 1 resistance training variables used in this study

Variables 1-SET 3-SET

Intensity 60%–80% of 10 Mr 60%–80% of 10 Mrrepetitions 8–12 8–12 speed 2 seconds of eccentric and 2 seconds of concentric 2 seconds’ eccentric and concentricInterval between exercises 90 seconds 90 secondsInterval between sets – 120 secondsFrequency 2 times per week 2 times per weeknumber of exercises 5 exercises 5 exercisesset 1 set per exercise 3 sets per exercise

Abbreviations: 1-seT, single set; 3-seT, three sets; Mr, maximum repetitions.

Table 2 Characteristics of elderly women before and after 24 sessions of training; women performing a single set (1-seT, n=11) and those performing three sets (3-seT, n=8)

Before After

1-SET 3-SET 1-SET 3-SET

Age 67.1±3.7 69.4±6.0Body mass (kg) 65.1±12.1 63.9±8.1 65.7±11.9 64.3±8.3height (cm) 153±0.1 152±0.1 153±0.1 152±0.1Body mass index (kg/m2) 27.9±4.0 27.7±3.6 27.9±3.9 27.8±3.5Abdomen (cm) 95.7±11.9 96.8±7.5 94.1±11.2 94.1±6.9Waist (cm) 85.2±10.7 86.4±8.6 84.7±9.1 84.7±7.5%g (body fat percentage) 40.9±2.7 40.0±1.9 39.0±2.7 39.0±2.1

Note: Data are presented as mean ± standard deviation.

Clinical Interventions in Aging 2014:9 submit your manuscript | www.dovepress.com

Dovepress

Dovepress

1779

resistance training and respiratory muscle strength

post: 102.5±14.9 cmH2O; effect size: 2.40), respectively

(Figure 2).

MIP also increased significantly (P,0.05) in both groups

(pre: 90.0±17.0 cmH2O; post: 102.3±17.5 cmH

2O; effect size:

0.71) and (pre: 72.5±16.0 cmH2O; post: 80.6±20.1 cmH

2O;

effect size: 0.51) for the 1-SET and 3-SET groups, respec-

tively (Figure 3).

Both the 1-SET and 3-SET groups significantly improved

(P,0.05) in the sit-to-stand test (pre: 19.0±3.2 repetitions;

post: 21.0±3.8 repetitions; effect size: 0.61) and (pre:

18.6±3.0 repetitions; post: 21.6±2.9 repetitions; effect size:

1.00), respectively (Figure 4).

In the exercises assessed, both groups demonstrated sig-

nificantly (P,0.0001) increased levels of muscle strength

(40%–80%) after training (Table 3). The intergroup com-

parison did not show any significant difference in any of the

analyzed parameters.

DiscussionThe main finding of this study was that single set (SS) and

multiple set (MS) RT programs are efficient methods for

improving performance in the sit-to-stand test and increas-

ing muscle strength, MIP, and MEP in elderly women after

24 sessions of training. Both the 1-SET and 3-SET groups

showed statistically significant changes in respiratory muscle

strength. To the best of our knowledge, this was the first study

to compare the effects of RT volume on respiratory muscle

strength in elderly women.

Currently, MIP and MEP are widely used, and the objec-

tives are to identify possible weakness, respiratory muscle

failure, and fatigue, as well as to quantify the ef fects of

respiratory training.6–10 This capacity is considered as an

important parameter for the assessment, mainly in individuals

with certain chronic diseases, and the elderly, because they

experience significant respiratory changes with the onset of

senescence.8,9,18

Respiratory muscle strength may have increased because,

during RT, abdominal muscles are used as stabilizers,

through isometric contractions that maintain body posture,

contributing to improved muscular strength.19 Among

the different exercises used in our protocol (submaximal/

maximal strength between 8–12 MR), the deadlift is con-

sidered an important exercise that encourages the activa-

tion of important respiratory muscles, namely, the rectus

abdominis, transverse abdominis, and serratus anterior.19

Additionally, abdominal exercises are normally prescribed

in RT programs.17 Hackett et al11 suggest that other poten-

tial factors which may contribute to the increase of the

respiratory muscles strength include the involvement of the

diaphragm during RT.

Figure 2 Maximum expiratory pressure (MeP) before and after 24 sessions of resistance training.Notes: Data are presented as means ± standard deviation. Percent differences between pre-test and post-test. *P,0.05, versus pre-test.Abbreviations: 1-seT, single set; 3-seT, three sets.

1-SET

3-SET

0

50

100

150 * ↑34.6%

* ↑35.8%

PrePost

MEP

(cm

H2O

)

Figure 3 Maximum inspiratory pressure (MIP) before and after 24 sessions of resistance training.Notes: Data are presented as means ± standard deviation. Percent differences between pre-test and post-test. *P,0.05, versus pre-test.Abbreviations: 1-seT, single set; 3-seT, three sets.

1-SET

3-SET

0

50

100

150*

↑13.7% * ↑11.2%

PrePost

MIP

(cm

H2O

)

Figure 4 Functional performance in the sit-to-stand test before and after 24 sessions of resistance training.Notes: Data are presented as means ± standard deviation. Percent differences between pre-test and post-test. *P,0.05, versus pre-test.Abbreviations: 1-seT, single set; 3-seT, three sets.

Num

ber o

f rep

etiti

ons

1-SET

3-SET

30

20

10

0

* *PrePost

↑10.6% ↑17.1%

Clinical Interventions in Aging 2014:9submit your manuscript | www.dovepress.com

Dovepress

Dovepress

1780

Abrahin et al

Watsford and Murphy20 demonstrated a significant

increase in respiratory muscle strength in elderly women

participating in specific respiratory muscle training over

a period of 8 weeks. Other benefits observed included a

reduction in the submaximal heart rate and an increase

in maximum voluntary ventilation, when compared to a

control group. A study12 investigated the effects of flex-

ibility training (proprioceptive neuromuscular facilitation)

combined with resistance training (elastic resistance bands)

on respiratory muscle strength in adult women, and its

results showed significant increases in MIP and MEP. In

accordance with our results, these studies suggested that

specific respiratory muscle training and resistance training

are important adjuvants in improving respiratory muscle

strength.11,12,20

In a recent study, MIP and MEP were observed to

decrease according to the fragility of the elderly person. In

addition, inspiratory and expiratory muscle strengths were

positively correlated with general muscle strength.21 These

data justify the need for further studies to assess the effects

of resistance exercise on inspiratory and expiratory muscle

strength, with the aim of minimizing or reversing loss of

respiratory function, given that a reduction in pulmonary

function is associated with an increase in morbidity and

mortality rates.18,22,23

Another important benefit observed in this study was

muscular strength gains. This physical component is related

to increased mobility and walking pace, due to increased mus-

culoskeletal excitability and muscle innervation, leading to

greater functional independence.3,24,25 Furthermore, increased

muscle strength can contribute to a reduced incidence of falls,

thus preventing bone fractures. Therefore, muscle strength is

an important physical component for maintaining the health

of the elderly.2,26

The elderly women who participated in this study dem-

onstrated statistically significant increases in levels of muscle

strength after 24 sessions of progressive RT over a period of

12 weeks, without significant intergroup differences (1-SET

versus 3-SET). These results could be explained by the short

training period (neural adaptations) used in agreement with

a recent study.27 Galvão and Taaffe28 assessed the effects of

SS and MS RT in the elderly, and their results demonstrated

that after 20 weeks of training, both groups significantly

increased their strength in the seven different types of exer-

cises analyzed. These results corroborate a meta-analysis

published by Fröhlich et al29 which demonstrated that SS

and MS RT can guarantee a similar strength increase in

individuals using short training periods, but the benefits of

using MS RT increase with longer training periods (over

25 weeks). Another meta-analysis30 reported that when sub-

jects used two to three sets per exercise, they demonstrated

a 46% increase in strength, in comparison with a single set,

regardless of the training level or the program duration. The

difference between these meta-analysis results could be

related to the inclusion methods employed by the different

studies and their statistical delineation.

The results of this study showed significant increases

in the sit-to-stand test. Currently, this test is considered

an important indicator of lower limb strength, and func-

tional capacity to perform basic activities in older adult

women,13,31–33 in addition to its correlation with quadriceps

strength and lean mass.33 The findings from this study cor-

roborate those of Galvão and Taaffe,28 in identifying that SS

programs performed two times per week are able to improve

performance in the sit-to-stand test.

No significant differences were observed in anthropometric

indexes between the groups after 24 training sessions. These

results can be explained by the absence of nutritional

Table 3 repetition test (10 Mr) before and after 24 sessions of training in the group performing a single set (1-seT, n=11) and in the group performing three sets (3-seT, n=8)

Exercisesin kg

Group Pre(mean ± SD)

Post(mean ± SD)

∆(mean ± SD)

∆%(mean ± SD)

P-value Effect size

Bench press 1-seT 13.8±1.7 21.6±3.2 7.8±2.1 56.5±13.8 ,0.0001* 4.593-seT 14.3±3.5 22.0±4.0 7.8±2.0 57.5±21.0 ,0.0001* 2.20

Deadlift 1-seT 10.0±3.8 16.5±3.6 6.5±2.4 60.0±23.5 ,0.0001* 1.713-seT 13.3±3.8 20.5±4.1 7.3±1.5 73.2±28.8 ,0.0001* 1.89

rowing 1-seT 19.5±2.7 26.6±2.5 7.1±3.7 38.3±20.4 ,0.0001* 2.633-seT 16.9±2.6 26.5±2.6 9.6±2.1 58.8±17.8 ,0.0001* 3.69

Calf raise 1-seT 21.8±3.5 38.6±2.3 16.8±3.4 79.1±22.0 ,0.0001* 4.803-seT 25.0±2.8 40.6±8.6 15.6±5.6 66.1±28.5 ,0.0001* 5.57

Notes: *P#0.001, versus pretest; ∆% = average percent difference between pre- and post-tests. Data are presented as mean ± standard deviation.Abbreviations: Mr, maximum repetitions, sD, standard deviation.

Clinical Interventions in Aging 2014:9 submit your manuscript | www.dovepress.com

Dovepress

Dovepress

1781

resistance training and respiratory muscle strength

intervention, given that the women maintained their nor-

mal eating habits during the study period. Washburn et al34

assessed the effects of SS RT on body composition using

double-emission densitometry in overweight adults. The

exercise protocol comprised a single set of nine exercises,

performed three times per week at 3–6 MR intensity over a

period of 6 months. The results revealed that, compared to

the control group, the intervention group had a significant

increase in lean mass. The intervention group did not show

any change in body fat, whereas the control group showed a

significant increase in body fat (mean: 1.9%). There was no

nutritional intervention in these groups, and the minimum

training volume helped to maintain a stable body fat mass.34

That evidence corroborates our study, given that both groups

received no nutritional intervention and showed no significant

changes in their body fat percentages.

ConclusionSingle- and multiple-set resistance training programs

increased respiratory muscle strength, muscle strength, and

sit-to-stand test performance in elderly women after 24 ses-

sions of training. Elderly women who do not prioritize time

for physical activity or do not have a good adherence to regu-

lar programs should be recommended to start with single-set

resistance training programs as a short-term strategy.

AcknowledgmentsThe authors would like to acknowledge Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

and Fundação de Apoio à Pesquisa e Inovação Tecnológica

do Estado de Sergipe (FAPITEC/SE) for their funding sup-

port for this study. We also thank teacher Abilio Borghi for

assistance with the grammar review of the manuscript.

DisclosureThe authors report no conflicts of interest in this work.

References1. World Health Organization. Interesting facts about ageing [Internet].

Geneva: WHO; 2012 [cited 2013 Aug 29]. Available from: http://www.who.int/ageing/about/facts/en/index.html. Accessed April 12, 2014.

2. Westcott WL. Resistance training is medicine: effects of strength training on health. Curr Sports Med Rep. 2012;11(4):209–216.

3. Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA. 1990;263(22):3029–3034.

4. Vaz Fragoso CA, Enright PL, McAvay G, Van Ness PH, Gill TM. Frailty and respiratory impairment in older persons. Am J Med. 2012; 125(1):79–86.

5. Sin DD, Wu L, Man SF. The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature. Chest. 2005;127(6):1952–1959.

6. American Thoracic Society/European Respiratory Society. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166(4):518–624.

7. Neder JA, Andreoni S, Castelo-Filhop A, Nery LE. Reference values for lung function tests. I. Static volumes. Braz J Med Biol Res. 1999; 32(6):703–717.

8. Kim J, Sapienza CM. Implications of expiratory muscle strength train-ing for rehabilitation of the elderly: Tutorial. J Rehabil Res Dev. 2005; 42(2):211–224.

9. Simões RP, Deus AP, Auad MA, Dionísio J, Mazzonetto M, Borghi-Silva A. Maximal respiratory pressure in healthy 20 to 89 year-old sedentary individuals of central São Paulo State. Rev Braz Fisioter. 2010;14(1):60–67.

10. HajGhanbari B, Yamabayashi C, Buna TR, et al. Effects of respiratory muscle training on performance in athletes: a systematic review with meta-analyses. J Strength Cond Res. 2013;27(6):1643–1663.

11. Hackett DA, Johnson NA, Chow CM. High-volume resistance training session acutely diminishes respiratory muscle strength. J Sports Sci Med. 2012;11(1):26–30.

12. Areas GP, Borghi-Silva A, Lobato AN, Silva AA, Freire RC Jr, Areas FZ. Effect of upper extremity proprioceptive neuromuscular facilitation com-bined with elastic resistance bands on respiratory muscle strength: a ran-domized controlled trial. Braz J Phys Ther. 2013;17(6):541–546.

13. Rikli RE, Jones CJ. Development and validation of a functional fitness test for community-residing older adults. J Aging Phys Act. 1999; 7(2):129–161.

14. Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32(1):77–97.

15. Siri WE. Body composition from fluid spaces and density: analysis of methods. 1961. Nutrition. 1993;9(5):480–491.

16. Norton K, Olds T. Antropométrica. Porto Alegre, Brazil: Artmed; 2005. 17. American College of Sports Medicine, Chodzko-Zajko WJ, Proctor DN,

Fiatarone Singh MA, et al. American College of Sport Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41(7):1510–1530.

18. Phillips WT, Benton MJ, Wagner CL, Riley C. The effect of single set resistance training on strength and functional fitness in pulmonary rehabilitation patients. J Cardiopulm Rehabil. 2006;26(5):330–337.

19. Martuscello JM, Nuzzo JL, Ashley CD, Campbell BI, Orriola JJ, Mayer JM. Systematic review of core muscle activity during physical fitness exercises. J Strength Cond Res. 2013;27(6):1684–1698.

20. Watsford M, Murphy A. The effects of respiratory-muscle training on exercise in older women. J Aging Phys Act. 2008;16(3):245–260.

21. Pegorari MS, Ruas G, Patrizzi LJ. Relationship between frailty and respiratory function in the community-dwelling elderly. Braz J Phys Ther. 2013;17(1):9–16.

22. Santana H, Zoico E, Turcato E, et al. Relation between body composi-tion, fat distribution, and lung function in elderly men. Am J Clin Nutr. 2001;73(4):827–831.

23. Sin DD, Wu L, Man SF. The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature. Chest. 2005;127(6):1952–1959.

24. Bean JF, Kiely DK, Herman S, et al. The relationship between leg power and physical performance in mobility-limited older people. J Am Geriatr Soc. 2002;50(3):461–467.

25. Kalyani RR, Tra Y, Yeh HC, Egan JM, Ferrucci L, Brancati FL. Quadri-ceps strength, quadriceps power, and gait speed in older U.S. adults with diabetes mellitus: results from the National Health and Nutrition Exami-nation Survey, 1999–2002. J Am Geriatr Soc. 2013;61(5):769–775.

26. Marin RV, Pedrosa MA, Moreira-Pfrimer LD, Matsudo SM, Lazaretti-Castro M. Association between lean mass and handgrip strength with bone mineral density in physically active postmenopausal women. J Clin Densitom. 2010;13(1):96–101.

27. Radaelli R, Botton CE, Wilhelm EN, et al. Low- and high-volume strength training induces similar neuromuscular improvements in mus-cle quality in elderly women. Exp Gerontol. 2013;48(8):710–716.

Clinical Interventions in Aging

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/clinical-interventions-in-aging-journal

Clinical Interventions in Aging is an international, peer-reviewed journal focusing on evidence-based reports on the value or lack thereof of treatments intended to prevent or delay the onset of maladaptive correlates of aging in human beings. This journal is indexed on PubMed Central, MedLine,

CAS, Scopus and the Elsevier Bibliographic databases. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Clinical Interventions in Aging 2014:9submit your manuscript | www.dovepress.com

Dovepress

Dovepress

Dovepress

1782

Abrahin et al

28. Galvão DA, Taaffe DR. Resistance exercise dosage in older adults: single-versus multiset on physical performance and body composition. J Am Geriatr Soc. 2005;53(12):2090–2097.

29. Fröhlich M, Emrich E, Schmidtbleicher D. Outcome effects of single-set versus multiple-set training – an advanced replication study. Res Sports Med. 2010;18(3):157–175.

30. Krieger JW. Single versus multiple sets of resistance exercise: a meta-regression. J Strength Cond Res. 2009;23(6):1890–1901.

31. Santos RG, Tribess S, Meneguci J, et al. [Lower limb strength as an indicator of functional disability in older individuals]. Motriz. 2013;19(3):S35–S42. Portuguese.

32. McCarthy EK, Horval MA, Holtsberg PA, Wisenbaker JM. Repeated chair stands as a measure of lower limb strength in sexagenarian women. J Geront A Biol Sci Med Sci. 2004;59(11):1207–1212.

33. Taaffe DR, Duret C, Wheeler S, Marcus R. Once-weekly resistance exercise improves muscle strength and neuromuscular performance in older adults. J Am Geriatr Soc. 1999;47(10):1208–1214.

34. Washburn RA, Kirk EP, Smith BK, et al. One set resistance training: effect on body composition in overweight young adults. J Sports Med Phys Fitness. 2012;52(3):273–279.